On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of l-spheres

被引:10
作者
Berrizbeitia, Pedro
Gonzalez, Marcos J.
Sirvent, Victor F.
机构
[1] Departamento de Matemáticas, Universidad Simón Bolívar, Apartado 89000, Caracas
关键词
Lefschetz number; Lefschetz zeta function; Cyclotomic polynomial; Periodic point; Minimal sets of Lefschetz periods; Morse-Smale diffeomorphism; Quasi-unipotent map; QUASI-UNIPOTENT MAPS; POINTS; BEHAVIOR;
D O I
10.1016/j.topol.2017.12.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide a general formula and give an explicit expression of the Lefschetz zeta function for any quasi-unipotent map on the space X = S-l x ... x (sic) n-times S-l, with l > 1. Among the quasi-unipotent maps are Morse-Smale diffeomorphisms. The Lefschetz zeta function is used to characterize the minimal set of Lefschetz periods for Morse-Smale diffeomorphisms on X; we completely describe this set, for families containing infinitely many Morse-Smale diffeomorphisms. The results of the present article are based on the techniques used in [5], in the computation of the Lefschetz zeta function for quasi-unipotent self maps on the n-dimensional torus. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:428 / 444
页数:17
相关论文
共 30 条
[1]  
Alseda L., 2000, ADV SERIES NONLINEAR, V5
[2]   THE BEHAVIOR OF THE INDEX OF PERIODIC POINTS UNDER ITERATIONS OF A MAPPING [J].
BABENKO, IK ;
BOGATYI, SA .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01) :1-26
[3]   DYNAMICS OF MORSE-SMALE DIFFEOMORPHISMS ON THE TORUS [J].
BATTERSON, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 256 (DEC) :395-403
[4]   On the Lefschetz zeta function for quasi-unipotent maps on the n-dimensional torus. II: The general case [J].
Berrizbeitia, Pedro ;
Gonzalez, Marcos J. ;
Mendoza, Alberto ;
Sirvent, Victor F. .
TOPOLOGY AND ITS APPLICATIONS, 2016, 210 :246-262
[5]   On the Lefschetz zeta function for quasi-unipotent maps on the n-dimensional torus [J].
Berrizbeitia, Pedro ;
Sirvent, Victor F. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2014, 20 (07) :961-972
[6]  
Bourbaki N., 1998, Elements of Mathematics
[7]   NIELSEN NUMBERS OF MAPS OF TORI [J].
BROOKS, RBS ;
BROWN, RF ;
PAK, J ;
TAYLOR, DH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 52 (OCT) :398-400
[8]  
Brown R.F., 1971, LEFSCHETZ FIXED POIN
[9]   PERIODS AND LEFSCHETZ ZETA-FUNCTIONS [J].
CASASAYAS, J ;
LLIBRE, J ;
NUNES, A .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (01) :51-66
[10]   THE LEFSCHETZ NUMBERS OF ITERATED MAPS [J].
DUAN, HB .
TOPOLOGY AND ITS APPLICATIONS, 1995, 67 (01) :71-79