Influence of vacancies on the elastic properties of a graphene sheet

被引:38
作者
Tapia, A. [1 ]
Peon-Escalante, R. [1 ]
Villanueva, C. [1 ]
Aviles, F. [1 ,2 ]
机构
[1] Univ Autonoma Yucatan, Fac Ingn, Merida 97310, Yucatan, Mexico
[2] Ctr Invest Cient Yucatan, AC, Merida 97200, Yucatan, Mexico
关键词
Graphene; Mechanical properties; Elastic properties; Vacancy; Defects; Finite element analysis; WALLED CARBON NANOTUBES; FINITE-ELEMENT APPROACH; MECHANICAL-PROPERTIES; DEFECTS; FIELD; SIMULATION; MONOLAYER; GRAPHITE; FRACTURE;
D O I
10.1016/j.commatsci.2011.12.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The influence of vacancies on the elastic properties of a single-layer graphene sheet is investigated using atomistic finite element analysis. The location and density of vacancies (vacancy number per unit area of graphene sheet) are the main parameters investigated. It is found that a single vacancy yields only a minor reduction on the effective elastic modulus of the graphene sheet, irrespective of its position in the sheet, but this elastic parameter is significantly reduced as the number of vacancies increases. The position of the vacancy significantly influences the shear modulus and Poisson's ratio of the sheet. The reduction in shear modulus and Poisson's ratio is more pronounced when the vacancy is in a region of large strain gradients. (C) 2011 Published by Elsevier B.V.
引用
收藏
页码:255 / 262
页数:8
相关论文
共 33 条
[11]   RECOMMENDED TERMINOLOGY FOR THE DESCRIPTION OF CARBON AS A SOLID - (IUPAC RECOMMENDATIONS 1995) [J].
FITZER, E ;
KOCHLING, KH ;
BOEHM, HP ;
MARSH, H .
PURE AND APPLIED CHEMISTRY, 1995, 67 (03) :473-506
[12]   Computational materials: Multi-scale modeling and simulation of nanostructured materials [J].
Gates, TS ;
Odegard, GM ;
Frankland, SJV ;
Clancy, TC .
COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (15-16) :2416-2434
[13]   Numerical investigation of elastic mechanical properties of graphene structures [J].
Georgantzinos, S. K. ;
Giannopoulos, G. I. ;
Anifantis, N. K. .
MATERIALS & DESIGN, 2010, 31 (10) :4646-4654
[14]   Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach [J].
Giannopoulos, G. I. ;
Kakavas, P. A. ;
Anifantis, N. K. .
COMPUTATIONAL MATERIALS SCIENCE, 2008, 41 (04) :561-569
[15]   ROLE OF SP(3) DEFECT STRUCTURES IN GRAPHITE AND CARBON NANOTUBES [J].
HIURA, H ;
EBBESEN, TW ;
FUJITA, J ;
TANIGAKI, K ;
TAKADA, T .
NATURE, 1994, 367 (6459) :148-151
[16]   Recent advances in graphene based polymer composites [J].
Kuilla, Tapas ;
Bhadra, Sambhu ;
Yao, Dahu ;
Kim, Nam Hoon ;
Bose, Saswata ;
Lee, Joong Hee .
PROGRESS IN POLYMER SCIENCE, 2010, 35 (11) :1350-1375
[17]   Atomistic continuum modeling of graphene membranes [J].
Larsson, Ragnar ;
Samadikhah, Kaveh .
COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (05) :1744-1753
[18]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388
[19]   A structural mechanics approach for the analysis of carbon nanotubes [J].
Li, CY ;
Chou, TW .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2003, 40 (10) :2487-2499
[20]   Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes [J].
Liu, B ;
Jiang, H ;
Huang, Y ;
Qu, S ;
Yu, MF ;
Hwang, KC .
PHYSICAL REVIEW B, 2005, 72 (03)