Non-antibiotic antimicrobial agents to combat biofilm-forming bacteria

被引:60
作者
Cao, Yuxue [1 ,2 ]
Naseri, Mahdi [3 ]
He, Yan [2 ,4 ,5 ]
Xu, Chun [2 ]
Walsh, Laurence J. [2 ]
Ziora, Zyta M. [6 ]
机构
[1] Univ Queensland, Sch Chem & Mol Biosci, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Dent, Brisbane, Qld 4006, Australia
[3] Monash Univ, Bioresource Proc Res Inst Australia BioPRIA, Dept Chem Engn, Clayton, Vic 3800, Australia
[4] Massachusetts Gen Hosp, Dept Oral & Maxillofacial Surg, Boston, MA 02114 USA
[5] Harvard Sch Dent Med, Boston, MA 02114 USA
[6] Univ Queensland, Inst Mol Biosci, Brisbane, Qld 4072, Australia
关键词
Antimicrobial; Biofilm; Bacteria; Non-antibiotic; TITANIUM-DIOXIDE NANOPARTICLES; STAPHYLOCOCCUS-AUREUS; SILVER NANOPARTICLES; ZINC-OXIDE; STREPTOCOCCUS-MUTANS; IMMUNE-RESPONSE; IN-VITRO; PEPTIDES; INFECTIONS; ANTIBACTERIAL;
D O I
10.1016/j.jgar.2019.11.012
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Biofilms can be produced by multiple species or by a single strain of bacteria. The biofilm state enhances the resistance of the resident microorganisms to antimicrobial agents by producing extracellular polymeric substances. Typically, antibiotics are used to stop the growth of bacteria, but emerging resistance has limited their effectiveness. Bacteria in biofilms are less susceptible to antibiotics compared with their free-floating state, as biofilms impair antibiotic penetration. To obviate this challenge, nonantibiotic antimicrobial agents are needed. This review describes two classes of these agents, namely antimicrobial nanoparticles and antimicrobial peptides. Applications of these antimicrobials in the food industry and medical applications are discussed, and the directions for future research are highlighted. (c) 2019 International Society for Antimicrobial Chemotherapy. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:445 / 451
页数:7
相关论文
共 119 条
[1]   Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials [J].
Abdulkareem, Elham H. ;
Memarzadeh, K. ;
Allaker, R. P. ;
Huang, J. ;
Pratten, J. ;
Spratt, D. .
JOURNAL OF DENTISTRY, 2015, 43 (12) :1462-1469
[2]  
Afacan NJ, 2012, CURR PHARM DESIGN, V18, P807, DOI 10.2174/138161212799277617
[3]   Three-dimensional biofilm model with individual cells and continuum EPS matrix [J].
Alpkvist, Erik ;
Picioreanu, Cristian ;
van Loosdrecht, Mark C. M. ;
Heyden, Anders .
BIOTECHNOLOGY AND BIOENGINEERING, 2006, 94 (05) :961-979
[4]   Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces [J].
Alves, Diana ;
Pereira, Maria Olivia .
BIOFOULING, 2014, 30 (04) :483-499
[5]   The effect of lactoferrin on oral bacterial attachment [J].
Arslan, S. Y. ;
Leung, K. P. ;
Wu, C. D. .
ORAL MICROBIOLOGY AND IMMUNOLOGY, 2009, 24 (05) :411-416
[6]  
Augustin M, 2004, J PHARM PHARM SCI, V7, P55
[7]   Ecology of the Oral Microbiome: Beyond Bacteria [J].
Baker, Jonathon L. ;
Bor, Batbileg ;
Agnello, Melissa ;
Shi, Wenyuan ;
He, Xuesong .
TRENDS IN MICROBIOLOGY, 2017, 25 (05) :362-374
[8]   Zinc oxide nanoparticle inhibits the biofilm formation of Streptococcus pneumoniae [J].
Bhattacharyya, Purnita ;
Agarwal, Bikash ;
Goswami, Madhurankhi ;
Maiti, Debasish ;
Baruah, Sunandan ;
Tribedi, Prosun .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2018, 111 (01) :89-99
[9]   Material properties of biofilms-a review of methods for understanding permeability and mechanics [J].
Billings, Nicole ;
Birjiniuk, Alona ;
Samad, Tahoura S. ;
Doyle, Patrick S. ;
Ribbeck, Katharina .
REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (03)
[10]   Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium [J].
Brayner, R ;
Ferrari-Iliou, R ;
Brivois, N ;
Djediat, S ;
Benedetti, MF ;
Fiévet, F .
NANO LETTERS, 2006, 6 (04) :866-870