Microfabricated Biomaterials for Engineering 3D Tissues

被引:322
作者
Zorlutuna, Pinar [2 ]
Annabi, Nasim [2 ]
Camci-Unal, Gulden [2 ]
Nikkhah, Mehdi [2 ]
Cha, Jae Min [2 ]
Nichol, Jason W. [2 ]
Manbachi, Amir [4 ]
Bae, Hojae [2 ]
Chen, Shaochen [5 ]
Khademhosseini, Ali [1 ,3 ]
机构
[1] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[2] Harvard Univ, Brigham & Womens Hosp, Sch Med, Ctr Biomed Engn,Dept Med, Cambridge, MA 02139 USA
[3] MIT, Harvard MIT Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[4] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON, Canada
[5] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
tissue engineering; microfabrication; 3D fabrication; biomaterials; vascularization; directed differentiation; MESENCHYMAL STEM-CELLS; PHOTOCROSSLINKABLE HYALURONIC-ACID; MICROMOLDED NONADHESIVE HYDROGELS; SUPERCRITICAL CARBON-DIOXIDE; IN-VITRO CHONDROGENESIS; EXTRACELLULAR-MATRIX; BIOMIMETIC MATERIALS; SOFT LITHOGRAPHY; PROGENITOR CELLS; LADEN MICROGELS;
D O I
10.1002/adma.201104631
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mimicking natural tissue structure is crucial for engineered tissues with intended applications ranging from regenerative medicine to biorobotics. Native tissues are highly organized at the microscale, thus making these natural characteristics an integral part of creating effective biomimetic tissue structures. There exists a growing appreciation that the incorporation of similar highly organized microscale structures in tissue engineering may yield a remedy for problems ranging from vascularization to cell function control/determination. In this review, we highlight the recent progress in the field of microscale tissue engineering and discuss the use of various biomaterials for generating engineered tissue structures with microscale features. In particular, we will discuss the use of microscale approaches to engineer the architecture of scaffolds, generate artificial vasculature, and control cellular orientation and differentiation. In addition, the emergence of microfabricated tissue units and the modular assembly to emulate hierarchical tissues will be discussed.
引用
收藏
页码:1782 / 1804
页数:23
相关论文
共 236 条
[1]   Cell culture: Biology's new dimension [J].
Abbott, A .
NATURE, 2003, 424 (6951) :870-872
[2]   Photo- and electropatterning of hydrogel-encapsulated living cell arrays [J].
Albrecht, DR ;
Tsang, VL ;
Sah, RL ;
Bhatia, SN .
LAB ON A CHIP, 2005, 5 (01) :111-118
[3]   Probing the role of multicellular organization in three-dimensional microenvironments [J].
Albrecht, DR ;
Underhill, GH ;
Wassermann, TB ;
Sah, RL ;
Bhatia, SN .
NATURE METHODS, 2006, 3 (05) :369-375
[4]   Controlling Cell Behavior Through the Design of Polymer Surfaces [J].
Alves, Natalia M. ;
Pashkuleva, Iva ;
Reis, Rui L. ;
Mano, Joao F. .
SMALL, 2010, 6 (20) :2208-2220
[5]   Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells [J].
Anderson, DG ;
Levenberg, S ;
Langer, R .
NATURE BIOTECHNOLOGY, 2004, 22 (07) :863-866
[6]   Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities [J].
Andersson, H ;
van den Berg, A .
LAB ON A CHIP, 2004, 4 (02) :98-103
[7]  
Annabi N., 2011, J SUPERCRIT IN PRESS
[8]  
Annabi N, 2010, TISSUE ENG PART B-RE, V16, P371, DOI [10.1089/ten.teb.2009.0639, 10.1089/ten.TEB.2009.0639]
[9]   The effect of elastin on chondrocyte adhesion and proliferation on poly (ε-caprolactone)/elastin composites [J].
Annabi, Nasim ;
Fathi, Ali ;
Mithieux, Suzanne M. ;
Martens, Penny ;
Weiss, Anthony S. ;
Dehghani, Fariba .
BIOMATERIALS, 2011, 32 (06) :1517-1525
[10]   Cross-linked open-pore elastic hydrogels based on tropoelastin, elastin and high pressure CO2 [J].
Annabi, Nasim ;
Mithieux, Suzanne M. ;
Weiss, Anthony S. ;
Dehghani, Fariba .
BIOMATERIALS, 2010, 31 (07) :1655-1665