Modular Design of Programmable Mechanofluorescent DNA Hydrogels

被引:132
作者
Merindol, Remi [1 ,2 ,3 ,6 ]
Delechiave, Giovanne [4 ]
Heinen, Laura [1 ,2 ,3 ]
Catalani, Luiz Henrique [4 ]
Walther, Andreas [1 ,2 ,3 ,5 ]
机构
[1] Univ Freiburg, Inst Macromol Chem, Stefan Meier Str 31, D-79104 Freiburg, Germany
[2] Univ Freiburg, Freiburg Mat Res Ctr, Stefan Meier Str 21, D-79104 Freiburg, Germany
[3] Univ Freiburg, Freiburg Ctr Interact Mat & Bioinspired Technol, Georges Kohler Allee 105, D-79110 Freiburg, Germany
[4] Univ Sao Paulo, Inst Chem, BR-05508000 Sao Paulo, Brazil
[5] Univ Freiburg, Freiburg Inst Adv Studies FRIAS, Albertstr 19, D-79104 Freiburg, Germany
[6] Univ Bordeaux, Ctr Rech Paul Pascal, 115 Ave Dr Albert Schweitzer, F-33600 Pessac, France
基金
巴西圣保罗研究基金会; 欧洲研究理事会;
关键词
SINGLE-MOLECULE; FORCE SPECTROSCOPY; MECHANOCHEMISTRY; MECHANOTRANSDUCTION; MICROSPONGES; ACTIVATION; CHANNEL; TENSION; PROBES; DAMAGE;
D O I
10.1038/s41467-019-08428-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanosensing systems are ubiquitous in nature and control many functions from cell spreading to wound healing. Biologic systems typically rely on supramolecular transformations and secondary reporter systems to sense weak forces. By contrast, synthetic mechanosensitive materials often use covalent transformations of chromophores, serving both as force sensor and reporter, which hinders orthogonal engineering of their sensitivity, response and modularity. Here, we introduce FRET-based, rationally tunable DNA tension probes into macroscopic 3D all-DNA hydrogels to prepare mechanofluorescent materials with programmable sacrificial bonds and stress relaxation. This design addresses current limitations of mechanochromic system by offering spatiotemporal resolution, as well as quantitative and modular force sensing in soft hydrogels. The programmable force probe design further grants temporal control over the recovery of the mechanofluorescence during stress relaxation, enabling reversible and irreversible strain sensing. We show proof-of-concept applications to study strain fields in composites and to visualize freezing-induced strain patterns in homogeneous hydrogels.
引用
收藏
页数:10
相关论文
共 49 条
[41]   Rotaxanes as Mechanochromic Fluorescent Force Transducers in Polymers [J].
Sagara, Yoshimitsu ;
Karman, Marc ;
Verde-Sesto, Ester ;
Matsuo, Kazuya ;
Kim, Yuna ;
Tamaoki, Nobuyuki ;
Weder, Christoph .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (05) :1584-1587
[42]   RNAi-Microsponges Form through Self-Assembly of the Organic and Inorganic Products of Transcription [J].
Shopsowitz, Kevin E. ;
Roh, Young Hoon ;
Deng, Zhou J. ;
Morton, Stephen W. ;
Hammond, Paula T. .
SMALL, 2014, 10 (08) :1623-1633
[43]   NompC TRP channel required for vertebrate sensory hair cell mechanotransduction [J].
Sidi, S ;
Friedrich, RW ;
Nicolson, T .
SCIENCE, 2003, 301 (5629) :96-99
[44]  
Stabley DR, 2012, NAT METHODS, V9, P64, DOI [10.1038/NMETH.1747, 10.1038/nmeth.1747]
[45]   Enzyme-catalysed assembly of DNA hydrogel [J].
Um, Soong Ho ;
Lee, Jong Bum ;
Park, Nokyoung ;
Kwon, Sang Yeon ;
Umbach, Christopher C. ;
Luo, Dan .
NATURE MATERIALS, 2006, 5 (10) :797-801
[46]   Mechanotransduction involving multimodular proteins: Converting force into biochemical signals [J].
Vogel, Viola .
ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE, 2006, 35 :459-488
[47]   DNA Materials: Bridging Nanotechnology and Biotechnology [J].
Yang, Dayong ;
Hartman, Mark R. ;
Derrien, Thomas L. ;
Hamada, Shogo ;
An, Duo ;
Yancey, Kenneth G. ;
Cheng, Ru ;
Ma, Minglin ;
Luo, Dan .
ACCOUNTS OF CHEMICAL RESEARCH, 2014, 47 (06) :1902-1911
[48]   DNA-based digital tension probes reveal integrin forces during early cell adhesion [J].
Zhang, Yun ;
Ge, Chenghao ;
Zhu, Cheng ;
Salaita, Khalid .
NATURE COMMUNICATIONS, 2014, 5
[49]   Visualizing Intercellular Tensile Forces by DNA-Based Membrane Molecular Probes [J].
Zhao, Bin ;
O'Brien, Casey ;
Mudiyanselage, Aruni P. K. K. Karunanayake ;
Li, Ningwei ;
Bagheri, Yousef ;
Wu, Rigumula ;
Sun, Yubing ;
You, Mingxu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (50) :18182-18185