A new family of distance-regular graphs with unbounded diameter

被引:47
作者
van Dam, ER
Koolen, JH
机构
[1] Tilburg Univ, Dept Econ & OR, NL-5000 LE Tilburg, Netherlands
[2] POSTECH, Dept Math, Pohang 790784, South Korea
关键词
Dimensional Space; Finite Field; Grassmann Graph; Arbitrary Finite Field; Unbounded Diameter;
D O I
10.1007/s00222-005-0442-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct distance-regular graphs with the same - classical - parameters as the Grassmann graphs on the e-dimensional subspaces of a (2e + 1)-dimensional space over an arbitrary finite field. This provides the first known family of non-vertex-transitive distance-regular graphs with unbounded diameter.
引用
收藏
页码:189 / 193
页数:5
相关论文
共 6 条
[1]   CURRENT RESEARCH ON ALGEBRAIC COMBINATORICS - SUPPLEMENTS TO OUR BOOK, ALGEBRAIC COMBINATORICS-I [J].
BANNAI, E ;
ITO, T .
GRAPHS AND COMBINATORICS, 1986, 2 (04) :287-308
[2]  
Brouwer A.E., 1989, DISTANCE REGULAR GRA
[3]   From local adjacency polynomials to locally pseudo-distance-regular graphs [J].
Fiol, MA ;
Garriga, E .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1997, 71 (02) :162-183
[4]   A CHARACTERIZATION OF GRASSMANN GRAPHS [J].
METSCH, K .
EUROPEAN JOURNAL OF COMBINATORICS, 1995, 16 (06) :639-644
[5]   Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra [J].
Terwilliger, P ;
Weng, CW .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (02) :287-298
[6]  
VANDAM ER, CHARACTERIZING DISTA