GENERALIZED Ψ-GERAGHTY-QUASI CONTRACTIONS IN b-METRIC SPACES

被引:0
作者
Morales, J. R. [1 ]
Rojas, E. M. [2 ]
机构
[1] Univ Los Andes, Dept Matemat, Merida 5101, Venezuela
[2] Univ Nacl Colombia, Dept Matemat, Bogota, Colombia
关键词
contraction-type mapping; common fixed point; FIXED-POINT THEOREMS; MAPPINGS; MAPS;
D O I
10.18514/MMN.2020.2951
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we generalize the well-known class of quasi contractions pairs, by using the so-called Geraghty's property and by controlling the contractive inequality with an altering distance function. For this class, in the setting of b-metric spaces, we prove the existence and uniqueness a of common fixed point assuming some non commutative notions. Finally, for this class of mappings we prove the b-convergence of the Jungck-Mann iterative scheme under suitable conditions on the b-metric space and on the altering distance function.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 24 条
[1]   Some new common fixed point theorems under strict contractive conditions [J].
Aamri, M ;
El Moutawakil, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 270 (01) :181-188
[2]   Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces [J].
Aghajani, Asadollah ;
Abbas, Mujahid ;
Roshan, Jamal Rezaei .
MATHEMATICA SLOVACA, 2014, 64 (04) :941-960
[3]  
Aoki T., 1942, Proc. Imp. Acad. Tokyo, V18, P588
[4]  
Bakhtin I. A., 1989, Functional Analysis, V30, P26, DOI DOI 10.1039/AP9892600037
[5]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[6]  
Czerwik S., 1993, Acta Mathematica et Informatica Universitatis Ostraviensis, V1, P5
[7]  
Czerwik S., 1998, Atti Semin. Mat. Fis. Univ. Modena, V46, P263
[9]   COMMON FIXED-POINT THEOREMS FOR COMMUTING MAPS ON A METRIC SPACE [J].
DAS, KM ;
NAIK, KV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 77 (03) :369-373
[10]   CONTRACTIVE MAPPINGS [J].
GERAGHTY, MA .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) :604-608