REAL-TIME MULTI-VIEW VOLUMETRIC RECONSTRUCTION OF DYNAMIC SCENES USING KINECT V2

被引:0
|
作者
Satnik, Andrej [1 ]
Izquierdo, Ebroul [1 ]
机构
[1] Queen Mary Univ London, Sch Elect Engn & Comp Sci, Multimedia & Vis Grp, London, England
关键词
volumetric; render; Kinect v2; voxel; multi-view; real-time;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A key challenge when displaying and processing sensed real-time 3D data is efficiency of generating and post-processing algorithms in order to acquire high quality 3D content. In contrast, our approach focuses on volumetric generation and processing volumetric data using an efficient low-cost hardware setting. Acquisition of volumetric data is performed by connecting several Kinect v2 scanners to a single PC that are subsequently calibrated using planar pattern. This process is by no means trivial and requires well designed algorithms for fast processing and quick rendering of volumetric data. This can be achieved by fusing efficient filtering methods such as Weighted median filter (WM), Radius outlier removal (ROR) and Laplace-based smoothing algorithm. In this context, we demonstrate the robustness and efficiency of our technique by sensing several scenes.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Real-time accurate 3D reconstruction based on kinect v2
    Li S.-R.
    Li Q.
    Li H.-Y.
    Hou P.-H.
    Cao W.-G.
    Wang X.-D.
    Li H.
    Ruan Jian Xue Bao/Journal of Software, 2016, 27 (10): : 2519 - 2529
  • [2] Real time RULA assessment using Kinect v2 sensor
    Manghisi, Vito Modesto
    Uva, Antonio Emmanuele
    Fiorentino, Michele
    Bevilacqua, Vitoantonio
    Trotta, Gianpaolo Francesco
    Monno, Giuseppe
    APPLIED ERGONOMICS, 2017, 65 : 481 - 491
  • [3] Real-time multi-view deconvolution
    Schmid, Benjamin
    Huisken, Jan
    BIOINFORMATICS, 2015, 31 (20) : 3398 - 3400
  • [4] Localizing people in multi-view environment using height map reconstruction in real-time
    Kiss, Akos
    Sziranyi, Tamas
    PATTERN RECOGNITION LETTERS, 2013, 34 (16) : 2135 - 2143
  • [5] Real-time multi-view 3D object tracking in cluttered scenes
    Jin, Huan
    Qian, Gang
    Rajko, Stjepan
    ADVANCES IN VISUAL COMPUTING, PT 2, 2006, 4292 : 647 - 656
  • [6] Improving Robustness of Shoulder Gesture Recognition Using Kinect V2 Method for Real-Time Movements
    Chandrasekhar, S.
    Mhala, N. N.
    SMART INTELLIGENT COMPUTING AND APPLICATIONS, VOL 2, 2020, 160 : 31 - 40
  • [7] Real-time approach for gait analysis using the Kinect v2 sensor for clinical assessment purpose
    Burle, Alexandre de Queiroz
    de Gusmao Lafayette, Thiago Buarque
    Fonseca, Jose Roberto
    Teichrieb, Veronica
    Fontes Da Gama, Alana Elza
    2020 22ND SYMPOSIUM ON VIRTUAL AND AUGMENTED REALITY (SVR 2020), 2020, : 144 - 153
  • [8] Real-time and Robust Collaborative Robot Motion Control with Microsoft Kinect® v2
    Teke, Burak
    Lanz, Minna
    Kamarainen, Joni-Kristian
    Hietanen, Antti
    2018 14TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA), 2018,
  • [9] Multicast of real-time multi-view video
    Zuo, Li
    Luo, Jian Guang
    Cai, Hua
    Li, Jiang
    2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 1225 - 1228
  • [10] Real-time multi-view face detection
    Zhang, ZQ
    Zhu, L
    Li, SZ
    Zhang, HJ
    FIFTH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, PROCEEDINGS, 2002, : 149 - 154