Finding Nemo: Predicting Movie Performances by Machine Learning Methods

被引:1
|
作者
Kim, Jong-Min [1 ]
Xia, Leixin [2 ]
Kim, Iksuk [3 ]
Lee, Seungjoo [4 ]
Lee, Keon-Hyung [5 ]
机构
[1] Univ Minnesota, Div Sci & Math, Stat Discipline, Morris, MN 56267 USA
[2] Univ Texas Hlth Sci Ctr Houston, Dept Biostat & Data Sci, Houston, TX 77030 USA
[3] Calif State Univ Los Angeles, Dept Mkt, 5151 State Univ Dr, Los Angeles, CA 90032 USA
[4] Cheongju Univ, Dept Big Data & Stat, Chungbuk 28503, South Korea
[5] Florida State Univ, Askew Sch Publ Adm & Policy, Tallahassee, FL 32306 USA
关键词
quantile regression; neural network; machine learning; forecasting; BOX-OFFICE; SUCCESS; REVIEWS;
D O I
10.3390/jrfm13050093
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Analyzing the success of movies has always been a popular research topic in the film industry. Artificial intelligence and machine learning methods in the movie industry have been applied to modeling the financial success of the movie industry. The new contribution of this research combined Bayesian variable selection and machine learning methods for forecasting the return on investment (ROI). We also attempt to compare machine learning methods including the quantile regression model with movie performance data in terms of in-sample and out of sample forecasting.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Information Retrieval and Machine Learning Methods for Academic Expert Finding
    de Campos, Luis M.
    Fernandez-Luna, Juan M.
    Huete, Juan F.
    Ribadas-Pena, Francisco J.
    Bolanos, Nestor
    ALGORITHMS, 2024, 17 (02)
  • [22] Machine Learning methods in predicting portmapper DDoS attack
    Cai Tianyu
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [23] Predicting bid prices by using machine learning methods
    Kim, Jong-Min
    Jung, Hojin
    APPLIED ECONOMICS, 2019, 51 (19) : 2011 - 2018
  • [24] Predicting the concentration of sulfate using machine learning methods
    Tahraoui, Hichem
    Belhadj, Abd-Elmouneim
    Amrane, Abdeltif
    Houssein, Essam H.
    EARTH SCIENCE INFORMATICS, 2022, 15 (02) : 1023 - 1044
  • [25] Predicting Cervical Cancer using Machine Learning Methods
    Alsmariy, Riham
    Healy, Graham
    Abdelhafez, Hoda
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (07) : 173 - 184
  • [26] Predicting the concentration of sulfate using machine learning methods
    Hichem Tahraoui
    Abd-Elmouneïm Belhadj
    Abdeltif Amrane
    Essam H. Houssein
    Earth Science Informatics, 2022, 15 : 1023 - 1044
  • [27] Predicting cervical cancer using machine learning methods
    Alsmariy R.
    Healy G.
    Abdelhafez H.
    1600, Science and Information Organization (11): : 173 - 184
  • [28] Applying Machine Learning Methods for Predicting Sand Storms
    Shaiba, Hadil Ahmed
    Alaashoub, Naseem Sulaiman
    Alzahrani, Anfal Ahmed
    2018 1ST INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS' 2018), 2018,
  • [29] Predicting preterm birth using machine learning methods
    Kloska, Anna
    Harmoza, Alicja
    Kloska, Sylwester M.
    Marciniak, Tomasz
    Sadowska-Krawczenko, Iwona
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [30] Decoupling and predicting natural gas deviation factor using machine learning methods
    Geng, Shaoyang
    Zhai, Shuo
    Ye, Jianwen
    Gao, Yajie
    Luo, Hao
    Li, Chengyong
    Liu, Xianshan
    Liu, Shudong
    SCIENTIFIC REPORTS, 2024, 14 (01):