Coarse-grained force field for the nucleosome from self-consistent multiscaling

被引:63
作者
Voltz, Karine [1 ,2 ]
Trylska, Joanna [3 ]
Tozzini, Valentina [4 ]
Kurkal-Siebert, Vandana [2 ,5 ]
Langowski, Joerg [1 ]
Smith, Jeremy [2 ,6 ]
机构
[1] German Canc Res Ctr, D-6900 Heidelberg, Germany
[2] Heidelberg Univ, IWR, Heidelberg, Germany
[3] Univ Warsaw, Interdisciplinary Ctr Math & Computat Modelling, Warsaw, Poland
[4] NEST CNR INFM Scuola Normale Super, Pisa, Italy
[5] BASF AG, Ludwigshafen, Germany
[6] Oak Ridge Natl Lab, Ctr Biophys Mol, Oak Ridge, TN 37831 USA
关键词
chromatin; molecular dynamics; mesoscopic models; radial distribution function; fluctuations;
D O I
10.1002/jcc.20902
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A coarse-grained simulation model for the nucleosome is developed, using a methodology modified from previous work on the ribosome. Protein residues and DNA nucleotides are represented as beads, interacting through harmonic (for neighboring) or Morse (for nonbonded) potentials. Force-field parameters were estimated by Boltzmann inversion of the corresponding radial distribution functions obtained from a 5-ns all-atom molecular dynamics (MD) simulation, and were refined to produce agreement with the all-atom MD simulation. This self-consistent multiscale approach yields a coarse-grained model that is capable of reproducing equilibrium structural properties calculated from a 50-ns all-atom MD simulation. This coarse-grained model speeds up nucleosome simulations by a factor of 10(3) and is expected to be useful in examining biologically relevant dynamical nucleosome phenomena on the microsecond timescale and beyond. (C) 2008 Wiley Periodicals, Inc.
引用
收藏
页码:1429 / 1439
页数:11
相关论文
共 45 条
[1]   Role of histone tails in chromatin folding revealed by a mesoscopic oligonucleosome model [J].
Arya, Gaurav ;
Schlick, Tamar .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (44) :16236-16241
[2]   Mesoscale model of polymer melt structure: Self-consistent mapping of molecular correlations to coarse-grained potentials [J].
Ashbaugh, HS ;
Patel, HA ;
Kumar, SK ;
Garde, S .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (10)
[3]   Multiscale modeling of biomolecular systems: in serial and in parallel [J].
Ayton, Gary S. ;
Noid, Will G. ;
Voth, Gregory A. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (02) :192-198
[4]   Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation [J].
Bahar, I ;
Jernigan, RL .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 266 (01) :195-214
[5]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[6]   Molecular dynamics simulations of a nucleosome and free DNA [J].
Bishop, TC .
JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2005, 22 (06) :673-685
[7]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[8]   Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA [J].
Brower-Toland, BD ;
Smith, CL ;
Yeh, RC ;
Lis, JT ;
Peterson, CL ;
Wang, MD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :1960-1965
[9]   Coarse-grained modeling of the actin filament derived from atomistic-scale simulations [J].
Chu, JW ;
Voth, GA .
BIOPHYSICAL JOURNAL, 2006, 90 (05) :1572-1582
[10]   New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations [J].
Darden, T ;
Perera, L ;
Li, LP ;
Pedersen, L .
STRUCTURE WITH FOLDING & DESIGN, 1999, 7 (03) :R55-R60