Common fixed point and invariant approximation results

被引:1
作者
Abbas, Mujahid [1 ]
Kim, Jong Kyu [2 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Kyungnam Univ, Dept Math Educ, Kyungnam 631701, South Korea
关键词
metrizable topological vector space; common fixed point; uniformly R-subweakly commuting mapping; asymptotically S-nonexpansive mapping; best approximation;
D O I
10.4134/BKMS.2007.44.3.537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Necessary conditions for the existence of common fixed points for noncommuting mappings satisfying generalized contractive conditions in the setup of certain metrizable topological vector spaces are obtained. As applications, related results on best approximation are derived. Our results extend, generalize and unify various known results in the literature.
引用
收藏
页码:537 / 545
页数:9
相关论文
共 21 条
[1]   Noncommuting selfmaps and invariant approximations [J].
Al-Thagafi, MA ;
Shahzad, N .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (12) :2778-2786
[2]   Common fixed points and best approximation [J].
AlThagafi, MA .
JOURNAL OF APPROXIMATION THEORY, 1996, 85 (03) :318-323
[3]  
Beg I., 2006, NONLINEAR FUNCTIONAL, V11, P421
[4]   Approximation of fixed points of uniformly R-subweakly commuting mappings [J].
Beg, Ismat ;
Sahu, D. R. ;
Diwan, S. D. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 324 (02) :1105-1114
[5]   Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition [J].
Beg, Ismat ;
Abbas, Mujahid .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[6]   Common fixed points for weakly compatible maps [J].
Chugh, R ;
Kumar, S .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (02) :241-247
[7]   Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps [J].
Hussain, N. ;
Jungck, G. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 321 (02) :851-861
[8]   Cq-commuting maps and invariant approximations [J].
Hussain, N. ;
Rhoades, B. E. .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[10]  
Jungck G., 1996, Far East J. Math. Sci, V4, P199