Deep Blind Hyperspectral Image Fusion

被引:96
|
作者
Wang, Wu [1 ]
Zeng, Weihong [1 ]
Huang, Yue [1 ]
Ding, Xinghao [1 ]
Paisley, John [2 ]
机构
[1] Xiamen Univ, Sch Informat Sci & Engn, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China
[2] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
基金
中国国家自然科学基金;
关键词
CLASSIFICATION;
D O I
10.1109/ICCV.2019.00425
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image fusion (HIF) reconstructs high spatial resolution hyperspectral images from low spatial resolution hyperspectral images and high spatial resolution multispectral images. Previous works usually assume that the linear mapping between the point spread functions of the hyperspectral camera and the spectral response functions of the conventional camera is known. This is unrealistic in many scenarios. We propose a method for blind HIF problem based on deep learning, where the estimation of the observation model and fusion process are optimized iteratively and alternatingly during the super-resolution reconstruction. In addition, the proposed framework enforces simultaneous spatial and spectral accuracy. Using three public datasets, the experimental results demonstrate that the proposed algorithm outperforms existing blind and nonblind methods.
引用
收藏
页码:4149 / 4158
页数:10
相关论文
共 50 条
  • [1] Enhanced Deep Blind Hyperspectral Image Fusion
    Wang, Wu
    Fu, Xueyang
    Zeng, Weihong
    Sun, Liyan
    Zhan, Ronghui
    Huang, Yue
    Ding, Xinghao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (03) : 1513 - 1523
  • [2] Middle-output deep image prior for blind hyperspectral and multispectral image fusion
    Bacca, Jorge
    Arcos, Christian
    Ramirez, Juan Marcos
    Arguello, Henry
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 132
  • [3] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [4] Deep Unsupervised Blind Hyperspectral and Multispectral Data Fusion
    Li, Jiaxin
    Zheng, Ke
    Yao, Jing
    Gao, Lianru
    Hong, Danfeng
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [5] Deep Blind Hyperspectral Image Super-Resolution
    Zhang, Lei
    Nie, Jiangtao
    Wei, Wei
    Li, Yong
    Zhang, Yanning
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (06) : 2388 - 2400
  • [6] Blind image fusion for hyperspectral imaging with the directional total variation
    Bungert, Leon
    Coomes, David A.
    Ehrhardt, Matthias J.
    Rasch, Jennifer
    Reisenhofer, Rafael
    Schonlieb, Carola-Bibiane
    INVERSE PROBLEMS, 2018, 34 (04)
  • [7] Spatially Varying Prior Learning for Blind Hyperspectral Image Fusion
    Xu, Junwei
    Wu, Fangfang
    Li, Xin
    Dong, Weisheng
    Huang, Tao
    Shi, Guangming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4416 - 4431
  • [8] A Deep Unfolding Network for Multispectral and Hyperspectral Image Fusion
    Zhang, Bihui
    Cao, Xiangyong
    Meng, Deyu
    REMOTE SENSING, 2024, 16 (21)
  • [9] Deep Multiple Feature Fusion for Hyperspectral Image Classification
    Cao, Xianghai
    Li, Renjie
    Wen, Li
    Feng, Jie
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (10) : 3880 - 3891
  • [10] Hyperspectral Image Classification With Deep Feature Fusion Network
    Song, Weiwei
    Li, Shutao
    Fang, Leyuan
    Lu, Ting
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3173 - 3184