A comparison of machine learning models for the mapping of groundwater spring potential

被引:35
|
作者
Al-Fugara, A'kif [1 ]
Pourghasemi, Hamid Reza [2 ]
Al-Shabeeb, Abdel Rahman [3 ]
Habib, Maan [4 ]
Al-Adamat, Rida [3 ]
AI-Amoush, Hani [5 ]
Collins, Adrian L. [6 ]
机构
[1] Al Al Bayt Univ, Fac Engn, Dept Surveying Engn, Mafraq 25113, Jordan
[2] Shiraz Univ, Coll Agr, Dept Nat Resources & Environm Engn, Shiraz, Iran
[3] Al Al Bayt Univ, Inst Earth & Environm Sci, Dept GIS & Remote Sensing, Mafraq 25113, Jordan
[4] Al Balqa Appl Univ, Dept Surveying & Geomat Engn, Al Salt 19117, Jordan
[5] Al Al Bayt Univ, Inst Earth & Environm Sci, Dept Earth Sci & Environm, Mafraq 25113, Jordan
[6] Rothamsted Res, Sustainable Agr Sci, Okehampton EX20 2SB, Devon, England
基金
英国生物技术与生命科学研究理事会;
关键词
Machine learning models; Groundwater mapping; Geographic information system; Variable importance; Jordan; SUPPORT VECTOR MACHINE; RANDOM FOREST; LOGISTIC-REGRESSION; SPATIAL PREDICTION; FREQUENCY RATIO; NEURAL-NETWORKS; GIS TECHNIQUES; WEST-BENGAL; RECHARGE; VULNERABILITY;
D O I
10.1007/s12665-020-08944-1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Groundwater resources are vitally important in arid and semi-arid areas meaning that spatial planning tools are required for their exploration and mapping. Accordingly, this research compared the predictive powers of five machine learning models for groundwater potential spatial mapping in Wadi az-Zarqa watershed in Jordan. The five models were random forest (RF), boosted regression tree (BRT), support vector machine (SVM), mixture discriminant analysis (MDA), and multivariate adaptive regression spline (MARS). These algorithms explored spatial distributions of 12 hydrological-geological-physiographical (HGP) conditioning factors (slope, altitude, profile curvature, plan curvature, slope aspect, slope length (SL), lithology, soil texture, average annual rainfall, topographic wetness index (TWI), distance to drainage network, and distance to faults) that determine where groundwater springs are located. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was employed to evaluate the prediction accuracies of the five individual models. Here the results were ranked in descending order as MDA (83.2%), RF (80.6%), SVM (80.2%), BRT (78.0%), and MARS (75.5%).The results show good potential for further use of machine learning techniques for mapping groundwater spring potential in other places where the use and management of groundwater resources is essential for sustaining rural or urban life.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] A comparison of machine learning models for the mapping of groundwater spring potential
    A’kif Al-Fugara
    Hamid Reza Pourghasemi
    Abdel Rahman Al-Shabeeb
    Maan Habib
    Rida Al-Adamat
    Hani Al-Amoush
    Adrian L. Collins
    Environmental Earth Sciences, 2020, 79
  • [2] Optimization of statistical and machine learning hybrid models for groundwater potential mapping
    Yariyan, Peyman
    Avand, Mohammadtaghi
    Omidvar, Ebrahim
    Pham, Quoc Bao
    Linh, Nguyen Thi Thuy
    Tiefenbacher, John P.
    GEOCARTO INTERNATIONAL, 2022, 37 (13) : 3877 - 3911
  • [3] Application of machine learning to groundwater spring potential mapping using averaging, bagging, and boosting techniques
    Wei, Aihua
    Li, Duo
    Bai, Xiaoli
    Wang, Rui
    Fu, Xiaogang
    Yu, Jieqing
    WATER SUPPLY, 2022, 22 (08) : 6882 - 6894
  • [4] Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping
    Duong Hai Ha
    Phong Tung Nguyen
    Romulus Costache
    Nadhir Al-Ansari
    Tran Van Phong
    Huu Duy Nguyen
    Mahdis Amiri
    Rohit Sharma
    Indra Prakash
    Hiep Van Le
    Hanh Bich Thi Nguyen
    Binh Thai Pham
    Water Resources Management, 2021, 35 : 4415 - 4433
  • [5] Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping
    Duong Hai Ha
    Phong Tung Nguyen
    Costache, Romulus
    Al-Ansari, Nadhir
    Tran Van Phong
    Huu Duy Nguyen
    Amiri, Mahdis
    Sharma, Rohit
    Prakash, Indra
    Van Le, Hiep
    Hanh Bich Thi Nguyen
    Binh Thai Pham
    WATER RESOURCES MANAGEMENT, 2021, 35 (13) : 4415 - 4433
  • [6] A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping
    Seyed Amir Naghibi
    Hamid Reza Pourghasemi
    Water Resources Management, 2015, 29 : 5217 - 5236
  • [7] A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping
    Naghibi, Seyed Amir
    Pourghasemi, Hamid Reza
    WATER RESOURCES MANAGEMENT, 2015, 29 (14) : 5217 - 5236
  • [8] Susceptibility mapping of groundwater salinity using machine learning models
    Amirhosein Mosavi
    Farzaneh Sajedi Hosseini
    Bahram Choubin
    Fereshteh Taromideh
    Marzieh Ghodsi
    Bijan Nazari
    Adrienn A. Dineva
    Environmental Science and Pollution Research, 2021, 28 : 10804 - 10817
  • [9] Susceptibility mapping of groundwater salinity using machine learning models
    Mosavi, Amirhosein
    Sajedi Hosseini, Farzaneh
    Choubin, Bahram
    Taromideh, Fereshteh
    Ghodsi, Marzieh
    Nazari, Bijan
    Dineva, Adrienn A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (09) : 10804 - 10817
  • [10] Application of Machine Learning and Geospatial Techniques for Groundwater Potential Mapping
    Saha, Rajarshi
    Baranval, Nikhil Kumar
    Das, Iswar Chandra
    Kumaranchat, Vinod Kumar
    Reddy, K. Satyanarayana
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (10) : 1995 - 2010