Carbon nanotubes as catalyst support in a glucose microfluidic fuel cell in basic media

被引:21
|
作者
Guerra-Balcazar, M. [1 ]
Cuevas-Muniz, F. M. [2 ]
Castaneda, F. [1 ]
Ortega, R. [1 ]
Alvarez-Contreras, L. [3 ]
Ledesma-Garcia, J. [2 ]
Arriaga, L. G. [1 ]
机构
[1] Ctr Invest & Desarrollo Tecnol Electroquim, Queretaro 76703, Mexico
[2] Univ Autonoma Queretaro, Fac Ingn, Div Invest & Posgrad, Queretaro 76010, Mexico
[3] Ctr Invest Mat Avanzados, Complejo Ind Chihuahua 31109, Chihuahua, Mexico
关键词
Carbon nanotubes; Microfluidic fuel cell; Glucose oxidation; ELECTROCHEMICAL ENERGY-STORAGE; ELECTROCATALYTIC OXIDATION; GOLD NANOPARTICLES; OXYGEN REDUCTION; LAMINAR-FLOW; METHANOL; ALKALINE; ACID; ELECTROLYTE;
D O I
10.1016/j.electacta.2011.07.099
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Au/MWCNTs catalysts were synthesised by chemical reduction and tested as anode electrodes in a glucose microfluidic fuel cell as a function of time at different temperatures. Physicochemical characterisation of Au/MWCNTs showed an average particle size of approximately 4 nm with high dispersion among the MWCNTs support. The use of MWNTCs as support provides chemical stability and good performance for microfluidic fuel cells. The maximum power density reached with Au/MWCNTs was 0.28 mW cm(-2). Chronoamperometric testing (4 h) at three operating temperatures (15, 25 and 35 degrees C) demonstrated that the use of Au/MWCNTs as anode electrodes showed better stability compared with that of Au/C. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8758 / 8762
页数:5
相关论文
共 50 条
  • [1] PdCo supported on multiwalled carbon nanotubes as an anode catalyst in a microfluidic formic acid fuel cell
    Morales-Acosta, D.
    Morales-Acosta, M. D.
    Godinez, L. A.
    Alvarez-Contreras, L.
    Duron-Torres, S. M.
    Ledesma-Garcia, J.
    Arriaga, L. G.
    JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9270 - 9275
  • [2] Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell
    Li, WZ
    Liang, CH
    Qiu, JS
    Zhou, WJ
    Han, HM
    Wei, ZB
    Sun, GQ
    Xin, Q
    CARBON, 2002, 40 (05) : 791 - 794
  • [3] Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell
    Kireeti, Kota V. M. K.
    Jha, Neetu
    JOURNAL OF POWER SOURCES, 2017, 364 : 392 - 399
  • [4] Maghemite as a catalyst for glucose oxidation in a microfluidic fuel cell
    Galindo, R.
    Dector, A.
    Arriaga, L. G.
    Gutierrez, S.
    Herrasti, P.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2012, 671 : 38 - 43
  • [5] Direct Glucose Fuel Cell: Noble Metal Catalyst Anode Polymer Electrolyte Membrane Fuel Cell with Glucose Fuel
    Apblett, Christopher A.
    Ingersoll, David
    Sarangapani, Sarang
    Kelly, Michael
    Atanassov, Plamen
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (01) : B86 - B89
  • [6] Synthesis of Au/C and Au/Pani for anode electrodes in glucose microfluidic fuel cell
    Guerra-Balcazar, M.
    Morales-Acosta, D.
    Castaneda, F.
    Ledesma-Garcia, J.
    Arriaga, L. G.
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (06) : 864 - 867
  • [7] Synthesis and Evaluation of Carbon Nanotubes Supported Silver Catalyst for Alkaline Fuel Cell
    Fazil, A.
    Chetty, R.
    ELECTROANALYSIS, 2014, 26 (11) : 2380 - 2387
  • [8] Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell
    Gago, A. S.
    Morales-Acosta, D.
    Arriaga, L. G.
    Alonso-Vante, N.
    JOURNAL OF POWER SOURCES, 2011, 196 (03) : 1324 - 1328
  • [9] A new type of high performance air-breathing glucose membraneless microfluidic fuel cell
    Arjona, N.
    Armenta-Gonzalez, A. J.
    Rivas, S.
    Guerra-Balcazar, M.
    Ledesma-Garcia, J.
    Arriaga, L. G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (42) : 14699 - 14705
  • [10] Glucose microfluidic fuel cell using air as oxidant
    Escalona-Villalpando, R. A.
    Dector, A.
    Dector, D.
    Moreno-Zuria, A.
    Duron-Torres, S. M.
    Galvan-Valencia, M.
    Arriaga, L. G.
    Ledesma-Garcia, J.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (48) : 23394 - 23400