Explicitly defined fractal interpolation functions with variable parameters

被引:29
作者
Serpa, Cristina [1 ]
Buescu, Jorge [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, Ctr Matemat & Aplicacoes Fundamentais, P-1749016 Lisbon, Portugal
关键词
DIMENSION;
D O I
10.1016/j.chaos.2015.01.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an explicit formula for the fractal interpolation function associated to an IFS with variable parameters. The solution is given in terms of the base p representation of numbers. This construction is a consequence of the formulation of the problem in a general functional equation setting. We introduce compatibility conditions as essential hypotheses to ensure problems in the functional system form are well-defined. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 26 条
[11]  
de Rham G., 1957, Univ. Politec. Torino. Rend. Sem. Mat, V16, P101
[12]  
Freeland GC, 1996, IEEE GLOBECOM 1996 - CONFERENCE RECORD, VOLS 1-3, P1353, DOI 10.1109/GLOCOM.1996.587667
[13]  
Girgensohn R., 1993, Aequationes Math, V46, P243
[14]  
Igudesman K, ARXIV12101068
[15]   A new approach for high fidelity seismic data recovery by fractal interpolation [J].
Liu, Hongyan ;
He, Tongjiang ;
Chen, Yukun ;
Li, Xinfu .
EARTHQUAKE SCIENCE, 2012, 25 (04) :339-346
[16]   Parameter identification of 1D fractal interpolation functions using bounding volumes [J].
Manousopoulos, Polychronis ;
Drakopoulos, Vassileios ;
Theoharis, Theoharis .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (04) :1063-1082
[17]   Estimating fractal dimension with fractal interpolation function models [J].
Penn, AI ;
Loew, MH .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1997, 16 (06) :930-937
[18]   A new approach to hydrologic modeling: Derived distributions revisited [J].
Puente, CE .
JOURNAL OF HYDROLOGY, 1996, 187 (1-2) :65-80
[19]   A relation between fractal dimension and Fourier transform -: electroencephalographic study using spectral and fractal parameters [J].
Sebastian, M. V. ;
Navascues, M. A. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (3-4) :657-665