Explicitly defined fractal interpolation functions with variable parameters

被引:29
作者
Serpa, Cristina [1 ]
Buescu, Jorge [1 ]
机构
[1] Univ Lisbon, Fac Ciencias, Ctr Matemat & Aplicacoes Fundamentais, P-1749016 Lisbon, Portugal
关键词
DIMENSION;
D O I
10.1016/j.chaos.2015.01.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct an explicit formula for the fractal interpolation function associated to an IFS with variable parameters. The solution is given in terms of the base p representation of numbers. This construction is a consequence of the formulation of the problem in a general functional equation setting. We introduce compatibility conditions as essential hypotheses to ensure problems in the functional system form are well-defined. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 1998, Invitation to Discrete Mathematics
[2]  
[Anonymous], 2008, Chin. J. Geophys, DOI DOI 10.1002/CJG2.1279
[3]  
Barnsley M., 1988, Fractals everywhere
[4]   THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
HARRINGTON, AN .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) :14-34
[5]   Synthetic turbulence, fractal interpolation, and large-eddy simulation [J].
Basu, Sukanta ;
Foufoula-Georgiou, Efi ;
Porté-Agel, Fernando .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (2 2) :026310-1
[6]   Reproducing Kernel Hilbert Spaces and fractal interpolation [J].
Bouboulis, P. ;
Mavroforakis, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (12) :3425-3434
[7]  
Chen J-L, 2009, P 2009 IEEE INT C NE, P26
[8]   On Uniqueness of Conjugacy of Continuous and Piecewise Monotone Functions [J].
Cieplinski, Krzysztof ;
Zdun, Marek Cezary .
FIXED POINT THEORY AND APPLICATIONS, 2009,
[9]   Three-dimensional tumor perfusion reconstruction using fractal interpolation functions [J].
Craciunescu, OI ;
Das, SK ;
Poulson, JM ;
Samulski, TV .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2001, 48 (04) :462-473
[10]   On the parameter identification problem in the plane and the polar fractal interpolation functions [J].
Dalla, L ;
Drakopoulos, V .
JOURNAL OF APPROXIMATION THEORY, 1999, 101 (02) :289-302