Active inference and learning

被引:348
|
作者
Friston, Karl [1 ]
FitzGerald, Thomas [1 ,2 ]
Rigoli, Francesco [1 ]
Schwartenbeck, Philipp [1 ,2 ,3 ,4 ]
O'Doherty, John [5 ]
Pezzulo, Giovanni [6 ]
机构
[1] UCL, Wellcome Trust Ctr Neuroimaging, 12 Queen Sq, London, England
[2] Max Planck UCL Ctr Computat Psychiat & Ageing Res, London, England
[3] Salzburg Univ, Ctr Neurocognit Res, Salzburg, Austria
[4] Paracelsus Med Univ Salzburg, Inst Neurosci, Christian Doppler Klin, Salzburg, Austria
[5] CALTECH, Caltech Brain Imaging Ctr, Pasadena, CA 91125 USA
[6] CNR, Inst Cognit Sci & Technol, Rome, Italy
基金
英国惠康基金;
关键词
Active inference; Habit learning; Bayesian inference; Goal-directed; Free energy; Information gain; Bayesian surprise; Epistemic value; Exploration; Exploitation; DECISION-MAKING; INFORMATION; PREDICTION; CHOICE; MODELS; EXPLORATION; SURPRISE; NOVELTY; UNCERTAINTY; COMPLEXITY;
D O I
10.1016/j.neubiorev.2016.06.022
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
This paper offers an active inference account of choice behaviour and learning. It focuses on the distinction between goal-directed and habitual behaviour and how they contextualise each other. We show that habits emerge naturally (and autodidactically) from sequential policy optimisation when agents are equipped with state-action policies. In active inference, behaviour has explorative (epistemic) and exploitative (pragmatic) aspects that are sensitive to ambiguity and risk respectively, where epistemic (ambiguity-resolving) behaviour enables pragmatic (reward-seeking) behaviour and the subsequent emergence of habits. Although goal-directed and habitual policies are usually associated with model-based and model-free schemes, we find the more important distinction is between belief-free and belief-based schemes. The underlying (variational) belief updating provides a comprehensive (if metaphorical) process theory for several phenomena, including the transfer of dopamine responses, reversal learning, habit formation and devaluation. Finally, we show that active inference reduces to a classical (Bellman) scheme, in the absence of ambiguity. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
引用
收藏
页码:862 / 879
页数:18
相关论文
共 50 条
  • [1] Active inference and epistemic value
    Friston, Karl
    Rigoli, Francesco
    Ognibene, Dimitri
    Mathys, Christoph
    Fitzgerald, Thomas
    Pezzulo, Giovanni
    COGNITIVE NEUROSCIENCE, 2015, 6 (04) : 187 - 214
  • [2] Planning and navigation as active inference
    Kaplan, Raphael
    Friston, Karl J.
    BIOLOGICAL CYBERNETICS, 2018, 112 (04) : 323 - 343
  • [3] Active Inference: A Process Theory
    Friston, Karl
    FitzGerald, Thomas
    Rigoli, Francesco
    Schwartenbeck, Philipp
    Pezzulo, Giovanni
    NEURAL COMPUTATION, 2017, 29 (01) : 1 - 49
  • [4] An empirical evaluation of active inference in multi-armed bandits
    Markovic, Dimitrije
    Stojic, Hrvoje
    Schwoebel, Sarah
    Kiebel, Stefan J.
    NEURAL NETWORKS, 2021, 144 : 229 - 246
  • [5] Scene Construction, Visual Foraging, and Active Inference
    Mirza, M. Berk
    Adams, Rick A.
    Mathys, Christoph D.
    Friston, Karl J.
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
  • [6] Planning and navigation as active inference
    Raphael Kaplan
    Karl J. Friston
    Biological Cybernetics, 2018, 112 : 323 - 343
  • [7] Reinforcement Learning or Active Inference?
    Friston, Karl J.
    Daunizeau, Jean
    Kiebel, Stefan J.
    PLOS ONE, 2009, 4 (07):
  • [8] Active inference and the two-step task
    Gijsen, Sam
    Grundei, Miro
    Blankenburg, Felix
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Active Inference, epistemic value, and vicarious trial and error
    Pezzulo, Giovanni
    Cartoni, Emilio
    Rigoli, Francesco
    Pio-Lopez, Leo
    Friston, Karl
    LEARNING & MEMORY, 2016, 23 (07) : 322 - 338
  • [10] Deep Active Inference and Scene Construction
    Heins, R. Conor
    Mirza, M. Berk
    Parr, Thomas
    Friston, Karl
    Kagan, Igor
    Pooresmaeili, Arezoo
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3