Wasserstein distance on configuration space

被引:8
作者
Decreusefond, L. [1 ]
机构
[1] TELECOM ParisTech LTCI, UMR 5141, F-75634 Paris 13, France
关键词
configuration space; Monge-Kantorovitch; optimal transportation problem; Poisson process;
D O I
10.1007/s11118-008-9077-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate here the optimal transportation problem on configuration space for the quadratic cost. It is shown that, as usual, provided that the corresponding Wasserstein is finite, there exists one unique optimal measure and that this measure is supported by the graph of the derivative (in the sense of the Malliavin calculus) of a "concave" (in a sense to be defined below) function. For finite point processes, we give a necessary and sufficient condition for the Wasserstein distance to be finite.
引用
收藏
页码:283 / 300
页数:18
相关论文
共 17 条
[1]   Analysis and geometry on configuration spaces [J].
Albeverio, S ;
Kondratiev, YG ;
Rockner, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (02) :444-500
[2]  
[Anonymous], **NON-TRADITIONAL**
[3]  
[Anonymous], OXFORD STUDIES PROBA
[4]   Estimating stein's constants for compound Poisson approximation [J].
Barbour, AD ;
Xia, A .
BERNOULLI, 2000, 6 (04) :581-590
[5]  
Barbour AD, 2002, ANN PROBAB, V30, P1492
[6]   STEIN METHOD AND POINT PROCESS-APPROXIMATION [J].
BARBOUR, AD ;
BROWN, TC .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1992, 43 (01) :9-31
[7]  
Barbour AD, 2001, ANN APPL PROBAB, V11, P964
[8]  
Daley DJ, 2003, An introduction to the theory of point processes: volume I: elementary theory and methods, V2nd
[9]   Monge-Kantorovitch measure transportation and Monge-Ampere equation on Wiener space [J].
Feyel, D ;
Üstünel, AS .
PROBABILITY THEORY AND RELATED FIELDS, 2004, 128 (03) :347-385
[10]  
Kallenberg O., 1983, RANDOM MEASURES, DOI 10.1515/9783112525609