Exponential Time-Stepping Method for Linear Complementarity Systems

被引:0
作者
Wang, Zhengyu [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
Convergence; Symmetric matrices; Ordinary differential equations; Optimal control; Minimization; Interpolation; Ear; Exponential time-stepping method; linear complementarity system (LCS); P-matrix; regularization; DYNAMICAL-SYSTEMS; SCHEME;
D O I
10.1109/TAC.2022.3183041
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear complementarity system (LCS) consists of an ordinary differential equation (ODE) and a linear complementarity problem (LCP). In this article, we propose an exponential time-stepping method for solving LCS, which uses exponential integrator to discretize the ODE and solves the LCPs at the discrete time points. Numerical results are reported for illustrating its good performance.
引用
收藏
页码:5653 / 5660
页数:8
相关论文
共 39 条
[11]   Passivity and complementarity [J].
Camlibel, M. K. ;
Iannelli, L. ;
Vasca, F. .
MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) :531-563
[12]   Conewise linear systems: Non-zenoness and observability [J].
Camlibel, M. Kanat ;
Pang, Jong-Shi ;
Shen, Jinglai .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2006, 45 (05) :1769-1800
[13]  
Çamlibel MK, 2003, 42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS, P1651
[14]   Optimization of fully controlled sweeping processes [J].
Cao, Tan H. ;
Colombo, Giovanni ;
Mordukhovich, Boris S. ;
Nguyen, Dao .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 :138-186
[15]   PERTURBATION BOUNDS OF P-MATRIX LINEAR COMPLEMENTARITY PROBLEMS [J].
Chen, Xiaojun ;
Xiang, Shuhuang .
SIAM JOURNAL ON OPTIMIZATION, 2008, 18 (04) :1250-1265
[16]   Differential variational inequality approach to dynamic games with shared constraints [J].
Chen, Xiaojun ;
Wang, Zhengyu .
MATHEMATICAL PROGRAMMING, 2014, 146 (1-2) :379-408
[17]   Newton iterations in implicit time-stepping scheme for differential linear complementarity systems [J].
Chen, Xiaojun ;
Xiang, Shuhuang .
MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) :579-606
[18]   Computational error bounds for a differential linear variational inequality [J].
Chen, Xiaojun ;
Wang, Zhengyu .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (03) :957-982
[19]  
Colombo G., 2012, Dyn. Contin. Discrete Impuls. Syst., Ser. B, V19, P117
[20]   Optimal Control of Sweeping Processes in Robotics and Traffic Flow Models [J].
Colombo, Giovanni ;
Mordukhovich, Boris ;
Dao Nguyen .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 182 (02) :439-472