Conventional multivariate statistical process monitoring methods constrained by the assumptions of linear and normal distributions for the measurements, such as principal component analysis and canonical variate analysis, demonstrate significantly higher fault alarm rates and lower fault detection rates in nonlinear dynamic industrial process monitoring. Kernel principal component analysis (KPCA) based on the radial basis function, has already been applied in numerous nonlinear industrial processes. However, an infinite-dimensional nonlinear mapping might be inefficient and redundant. To improve the efficiency of traditional methods, this study proposes the implementation of canonical variate nonlinear principal component analysis for monitoring nonlinear dynamic processes. The training data are first preprocessed by performing canonical variate analysis to reduce the effects of the dynamic characteristics of the data. Then, the state vectors are projected into a high dimension feature space by an explicit second-order polynomial mapping. The first k principal components and the remaining residual vectors are obtained in the feature space via conventional principal component analysis for fault detection. The combined statistic Q(c) is proposed for monitoring the variations in the linear and nonlinear residual spaces; its upper control limits can be estimated by the kernel density function. In comparison to the results of KPCA and nonlinear dynamic principal component analysis, the proposed method yielded significantly higher fault detection rates and relatively lower fault alarm rates in a simulated nonlinear dynamic process and the benchmark Tennessee Eastman process.
机构:
Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USAUniv So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
Alcala, Carlos F.
;
Qin, S. Joe
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USAUniv So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
机构:
China Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
Deng, Xiaogang
;
Tian, Xuemin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
Tian, Xuemin
;
Chen, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
King Abdulaziz Univ, Jeddah 21589, Saudi ArabiaChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
Chen, Sheng
;
Harris, Chris J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, EnglandChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
机构:
Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USAUniv So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
Alcala, Carlos F.
;
Qin, S. Joe
论文数: 0引用数: 0
h-index: 0
机构:
Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USAUniv So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
机构:
China Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
Deng, Xiaogang
;
Tian, Xuemin
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R ChinaChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
Tian, Xuemin
;
Chen, Sheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
King Abdulaziz Univ, Jeddah 21589, Saudi ArabiaChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China
Chen, Sheng
;
Harris, Chris J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Southampton, Dept Elect & Comp Sci, Southampton SO17 1BJ, Hants, EnglandChina Univ Petr, Coll Informat & Control Engn, Qingdao 266580, Peoples R China