Predicting individual task contrasts from resting-state functional connectivity using a surface-based convolutional network

被引:20
作者
Ngo, Gia H. [1 ,2 ]
Khosla, Meenakshi [1 ,2 ]
Jamison, Keith [3 ]
Kuceyeski, Amy [3 ]
Sabuncu, Mert R. [1 ,2 ,3 ]
机构
[1] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
[2] Cornell Tech, Ithaca, NY 14853 USA
[3] Weill Cornell Med, Radiol, New York, NY USA
基金
美国国家科学基金会;
关键词
Surface-based convolutional neural network; Task-evoked contrasts; Resting-state functional connectivity; HUMAN CEREBRAL-CORTEX; BRAIN; FMRI; ORGANIZATION; REPRESENTATION; ACTIVATION; INFERENCE; PATTERNS; REGIONS;
D O I
10.1016/j.neuroimage.2021.118849
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Task-based and resting-state represent the two most common experimental paradigms of functional neuroimaging. While resting-state offers a flexible and scalable approach for characterizing brain function, task-based techniques provide superior localization. In this paper, we build on recent deep learning methods to create a model that predicts task-based contrast maps from resting-state fMRI scans. Specifically, we propose BrainSurfCNN, a surface -based fully-convolutional neural network model that works with a representation of the brain's cortical sheet. BrainSurfCNN achieves exceptional predictive accuracy on independent test data from the Human Connectome Project, which is on par with the repeat reliability of the measured subject-level contrast maps. Conversely, our analyses reveal that a previously published benchmark is no better than group-average contrast maps. Finally, we demonstrate that BrainSurfCNN can generalize remarkably well to novel domains with limited training data.
引用
收藏
页数:16
相关论文
共 83 条
[1]   The quest for identifiability in human functional connectomes [J].
Amico, Enrico ;
Goni, Joaquin .
SCIENTIFIC REPORTS, 2018, 8
[2]   Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia [J].
Anticevic, Alan ;
Dierker, Donna L. ;
Gillespie, Sarah K. ;
Repovs, Grega ;
Csernansky, John G. ;
Van Essen, David C. ;
Barch, Deanna M. .
NEUROIMAGE, 2008, 41 (03) :835-848
[3]   Function in the human connectome: Task-fMRI and individual differences in behavior [J].
Barch, Deanna M. ;
Burgess, Gregory C. ;
Harms, Michael P. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. ;
Corbetta, Maurizio ;
Glasser, Matthew F. ;
Curtiss, Sandra ;
Dixit, Sachin ;
Feldt, Cindy ;
Nolan, Dan ;
Bryant, Edward ;
Hartley, Tucker ;
Footer, Owen ;
Bjork, James M. ;
Poldrack, Russ ;
Smith, Steve ;
Johansen-Berg, Heidi ;
Snyder, Abraham Z. ;
Van Essen, David C. .
NEUROIMAGE, 2013, 80 :169-189
[4]   A model of inductive bias learning [J].
Baxter, J .
JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2000, 12 :149-198
[5]   Single-subject fMRI mapping at 7 T of the representation of fingertips in S1: a comparison of event-related and phase-encoding designs [J].
Besle, Julien ;
Sanchez-Panchuelo, Rosa-Maria ;
Bowtell, Richard ;
Francis, Susan ;
Schluppeck, Denis .
JOURNAL OF NEUROPHYSIOLOGY, 2013, 109 (09) :2293-2305
[6]   FUNCTIONAL CONNECTIVITY IN THE MOTOR CORTEX OF RESTING HUMAN BRAIN USING ECHO-PLANAR MRI [J].
BISWAL, B ;
YETKIN, FZ ;
HAUGHTON, VM ;
HYDE, JS .
MAGNETIC RESONANCE IN MEDICINE, 1995, 34 (04) :537-541
[7]   Toward discovery science of human brain function [J].
Biswal, Bharat B. ;
Mennes, Maarten ;
Zuo, Xi-Nian ;
Gohel, Suril ;
Kelly, Clare ;
Smith, Steve M. ;
Beckmann, Christian F. ;
Adelstein, Jonathan S. ;
Buckner, Randy L. ;
Colcombe, Stan ;
Dogonowski, Anne-Marie ;
Ernst, Monique ;
Fair, Damien ;
Hampson, Michelle ;
Hoptman, Matthew J. ;
Hyde, James S. ;
Kiviniemi, Vesa J. ;
Kotter, Rolf ;
Li, Shi-Jiang ;
Lin, Ching-Po ;
Lowe, Mark J. ;
Mackay, Clare ;
Madden, David J. ;
Madsen, Kristoffer H. ;
Margulies, Daniel S. ;
Mayberg, Helen S. ;
McMahon, Katie ;
Monk, Christopher S. ;
Mostofsky, Stewart H. ;
Nagel, Bonnie J. ;
Pekar, James J. ;
Peltier, Scott J. ;
Petersen, Steven E. ;
Riedl, Valentin ;
Rombouts, Serge A. R. B. ;
Rypma, Bart ;
Schlaggar, Bradley L. ;
Schmidt, Sein ;
Seidler, Rachael D. ;
Siegle, Greg J. ;
Sorg, Christian ;
Teng, Gao-Jun ;
Veijola, Juha ;
Villringer, Arno ;
Walter, Martin ;
Wang, Lihong ;
Weng, Xu-Chu ;
Whitfield-Gabrieli, Susan ;
Williamson, Peter ;
Windischberger, Christian .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (10) :4734-4739
[8]   Inference in the age of big data: Future perspectives on neuroscience [J].
Bzdok, Danilo ;
Yeo, B. T. Thomas .
NEUROIMAGE, 2017, 155 :549-564
[9]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[10]   Clinical applications of the functional connectome [J].
Castellanos, F. Xavier ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Mehta, Ashesh D. ;
Milham, Michael P. .
NEUROIMAGE, 2013, 80 :527-540