Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation

被引:12
|
作者
Darrigrand, Vincent [1 ,2 ]
Pardo, David [1 ,3 ,4 ]
Muga, Ignacio [5 ]
机构
[1] Univ Basque Country, UPV EHU, Leioa, Spain
[2] Univ Pau & Pays Adour, Project Team INRIA Magique 3D, Pau, France
[3] BCAM, Bilbao, Spain
[4] Ikerbasque, E-48011 Bilbao, Spain
[5] Pontificia Univ Catolica Valparaiso, Valparaiso, Chile
关键词
Goal-oriented adaptivity; Finite element methods; Error representation; Helmholtz equation; FINITE-ELEMENT-METHOD; WAVE-GUIDE DISCONTINUITIES; PART II; ELECTROMAGNETIC APPLICATIONS; BOUNDS; OUTPUTS; FORMULATION;
D O I
10.1016/j.camwa.2015.03.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, the error of a given output functional is represented using bilinear forms that are different from those given by the adjoint problem. These representations can be employed to design novel h, p, and hp energy-norm and goal-oriented adaptive algorithms. Numerical results in 1D show that, for wave propagation problems, the advantages of this new representation are notorious when selecting the Laplace equation as the dual problem. Specifically, the computed upper bounds of the new error representation are sharper than the classical ones used in both energy-norm and goal-oriented adaptive methods, especially when the dispersion (pollution) error is significant. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:964 / 979
页数:16
相关论文
共 26 条
  • [1] Goal-oriented adaptivity using unconventional error representations for the multidimensional Helmholtz equation
    Darrigrand, Vincent
    Rodriguez-Rozas, Angel
    Muga, Ignacio
    Pardo, David
    Romkes, Albert
    Prudhomme, Serge
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (01) : 22 - 42
  • [2] Goal-Oriented p-Adaptivity using Unconventional Error Representations for a 1D Steady State Convection-Diffusion Problem
    Darrigrand, Vincent
    Rodriguez-Rozas, Angel
    Pardo, David
    Muga, Ignacio
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE (ICCS 2017), 2017, 108 : 848 - 856
  • [3] Goal-oriented h-adaptivity for the Helmholtz equation: error estimates, local indicators and refinement strategies
    Maria Steffens, Lindaura
    Pares, Nuria
    Diez, Pedro
    COMPUTATIONAL MECHANICS, 2011, 47 (06) : 681 - 699
  • [4] Time-domain goal-oriented adaptivity using pseudo-dual error representations
    Munoz-Matute, Judit
    Alberdi, Elisabete
    Pardo, David
    Calo, Victor M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 : 395 - 415
  • [5] Goal-oriented h-adaptivity for the Helmholtz equation: error estimates, local indicators and refinement strategies
    Lindaura Maria Steffens
    Núria Parés
    Pedro Díez
    Computational Mechanics, 2011, 47 : 681 - 699
  • [6] Goal-oriented error estimation and adaptivity in MsFEM computations
    Chamoin, Ludovic
    Legoll, Frederic
    COMPUTATIONAL MECHANICS, 2021, 67 (04) : 1201 - 1228
  • [7] On the Use of Symmetrized Transport Equation in Goal-Oriented Adaptivity
    Hanus, M.
    McClarren, R. G.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2016, 45 (04) : 314 - 333
  • [8] Goal-oriented error estimation and adaptivity for elliptic PDEs with parametric or uncertain inputs
    Bespalov, Alex
    Praetorius, Dirk
    Rocchi, Leonardo
    Ruggeri, Michele
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 345 : 951 - 982
  • [9] Remeshing criteria and proper error representations for goal oriented h-adaptivity
    Diez, Pedro
    Calderon, Giovanni
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (4-6) : 719 - 733
  • [10] Error estimation and adaptive moment hierarchies for goal-oriented approximations of the Boltzmann equation
    Abdelmalik, M. R. A.
    van Brummelen, E. H.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 : 219 - 239