Brain activity at rest: a multiscale hierarchical functional organization

被引:238
作者
Doucet, Gaelle [1 ]
Naveau, Mikael [1 ,2 ]
Petit, Laurent [1 ]
Delcroix, Nicolas [3 ]
Zago, Laure [1 ]
Crivello, Fabrice [1 ]
Jobard, Gael [1 ,2 ]
Tzourio-Mazoyer, Nathalie [1 ]
Mazoyer, Bernard [1 ,2 ,4 ,5 ]
Mellet, Emmanuel [1 ,2 ]
Joliot, Marc [1 ]
机构
[1] Univ Bordeaux, Bordeaux, France
[2] Univ Caen, F-14032 Caen, France
[3] GIP Cyceron, Caen, France
[4] Inst Univ France, Caen, France
[5] CHU Caen, F-14000 Caen, France
关键词
conscious resting state; fMRI; functional connectivity; independent component analysis; networks; INDEPENDENT COMPONENT ANALYSIS; VISUAL MENTAL-IMAGERY; DEFAULT NETWORK; WORKING-MEMORY; INTRINSIC SYSTEMS; CORTEX; STATE; ANATOMY; FLUCTUATIONS; COGNITION;
D O I
10.1152/jn.00895.2010
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Doucet G, Naveau M, Petit L, Delcroix N, Zago L, Crivello F, Jobard G, Tzourio-Mazoyer N, Mazoyer B, Mellet E, Joliot M. Brain activity at rest: a multiscale hierarchical functional organization. J Neurophysiol 105: 2753-2763, 2011. First published March 23, 2011; doi: 10.1152/jn.00895.2010.-Spontaneous brain activity was mapped with functional MRI (fMRI) in a sample of 180 subjects while in a conscious resting-state condition. With the use of independent component analysis (ICA) of each individual fMRI signal and classification of the ICA-defined components across subjects, a set of 23 resting-state networks (RNs) was identified. Functional connectivity between each pair of RNs was assessed using temporal correlation analyses in the 0.01- to 0.1-Hz frequency band, and the corresponding set of correlation coefficients was used to obtain a hierarchical clustering of the 23 RNs. At the highest hierarchical level, we found two anticorrelated systems in charge of intrinsic and extrinsic processing, respectively. At a lower level, the intrinsic system appears to be partitioned in three modules that subserve generation of spontaneous thoughts (M1a; default mode), inner maintenance and manipulation of information (M1b), and cognitive control and switching activity (M1c), respectively. The extrinsic system was found to be made of two distinct modules: one including primary somatosensory and auditory areas and the dorsal attentional network (M2a) and the other encompassing the visual areas (M2b). Functional connectivity analyses revealed that M1b played a central role in the functioning of the intrinsic system, whereas M1c seems to mediate exchange of information between the intrinsic and extrinsic systems.
引用
收藏
页码:2753 / 2763
页数:11
相关论文
共 44 条
[11]   Bootstrap confidence levels for phylogenetic trees (vol 93, pg 7085, 1996) [J].
Efron, B ;
Halloran, E ;
Holmes, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (23) :13429-13434
[12]   The human brain is intrinsically organized into dynamic, anticorrelated functional networks [J].
Fox, MD ;
Snyder, AZ ;
Vincent, JL ;
Corbetta, M ;
Van Essen, DC ;
Raichle, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (27) :9673-9678
[13]   Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging [J].
Fox, Michael D. ;
Raichle, Marcus E. .
NATURE REVIEWS NEUROSCIENCE, 2007, 8 (09) :700-711
[14]   Spontaneous low-frequency BOLD signal fluctuations: An fMRI investigation of the resting-state default mode of brain function hypothesis [J].
Fransson, P .
HUMAN BRAIN MAPPING, 2005, 26 (01) :15-29
[15]   Data-driven clustering reveals a fundamental subdivision of the human cortex into two global systems [J].
Golland, Yulia ;
Golland, Polina ;
Bentin, Shlomo ;
Malach, Rafael .
NEUROPSYCHOLOGIA, 2008, 46 (02) :540-553
[16]   Extrinsic and intrinsic systems in the posterior cortex of the human brain revealed during natural sensory stimulation [J].
Golland, Yulia ;
Bentin, Shlomo ;
Gelbard, Hagar ;
Benjamini, Yoav ;
Heller, Ruth ;
Nir, Yuval ;
Hasson, Uri ;
Malach, Rafael .
CEREBRAL CORTEX, 2007, 17 (04) :766-777
[17]   Uncovering Intrinsic Modular Organization of Spontaneous Brain Activity in Humans [J].
He, Yong ;
Wang, Jinhui ;
Wang, Liang ;
Chen, Zhang J. ;
Yan, Chaogan ;
Yang, Hong ;
Tang, Hehan ;
Zhu, Chaozhe ;
Gong, Qiyong ;
Zang, Yufeng ;
Evans, Alan C. .
PLOS ONE, 2009, 4 (04)
[18]   Fast and robust fixed-point algorithms for independent component analysis [J].
Hyvärinen, A .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (03) :626-634
[19]   HIERARCHICAL CLUSTERING SCHEMES [J].
JOHNSON, SC .
PSYCHOMETRIKA, 1967, 32 (03) :241-254
[20]   Wandering minds: The default network and stimulus-independent thought [J].
Mason, Malia F. ;
Norton, Michael I. ;
Van Horn, John D. ;
Wegner, Daniel M. ;
Grafton, Scott T. ;
Macrae, C. Neil .
SCIENCE, 2007, 315 (5810) :393-395