Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization

被引:1078
作者
Dong, Weisheng [1 ]
Zhang, Lei [3 ]
Shi, Guangming [1 ]
Wu, Xiaolin [2 ]
机构
[1] Xidian Univ, Sch Elect Engn, Chinese Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Peoples R China
[2] McMaster Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4M2, Canada
[3] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Deblurring; image restoration (IR); regularization; sparse representation; super-resolution; THRESHOLDING ALGORITHM; COMPONENT ANALYSIS; SIGNAL RECOVERY; REPRESENTATIONS; DICTIONARIES; MINIMIZATION;
D O I
10.1109/TIP.2011.2108306
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a powerful statistical image modeling technique, sparse representation has been successfully used in various image restoration applications. The success of sparse representation owes to the development of the l(1) - norm optimization techniques and the fact that natural images are intrinsically sparse in some domains. The image restoration quality largely depends on whether the employed sparse domain can represent well the underlying image. Considering that the contents can vary significantly across different images or different patches in a single image, we propose to learn various sets of bases from a precollected dataset of example image patches, and then, for a given patch to be processed, one set of bases are adaptively selected to characterize the local sparse domain. We further introduce two adaptive regularization terms into the sparse representation framework. First, a set of autoregressive (AR) models are learned from the dataset of example image patches. The best fitted AR models to a given patch are adaptively selected to regularize the image local structures. Second, the image nonlocal self-similarity is introduced as another regularization term. In addition, the sparsity regularization parameter is adaptively estimated for better image restoration performance. Extensive experiments on image deblurring and super-resolution validate that by using adaptive sparse domain selection and adaptive regularization, the proposed method achieves much better results than many state-of-the-art algorithms in terms of both PSNR and visual perception.
引用
收藏
页码:1838 / 1857
页数:20
相关论文
共 63 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 0903 UCLA CAM
[3]   TOTAL VARIATION SUPER RESOLUTION USING A VARIATIONAL APPROACH [J].
Babacan, S. Derin ;
Molina, Rafael ;
Katsaggelos, Aggelos K. .
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, :641-644
[4]   Digital image restoration [J].
Banham, MR ;
Katsaggelos, AK .
IEEE SIGNAL PROCESSING MAGAZINE, 1997, 14 (02) :24-41
[5]   Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems [J].
Beck, Amir ;
Teboulle, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (11) :2419-2434
[6]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[7]  
Bertero M., 1998, INTRO INVERSE PROBLE
[8]   A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (12) :2992-3004
[9]   Morphological component analysis: An adaptive thresholding strategy [J].
Bobin, Jerome ;
Starck, Jean-Luc ;
Fadili, Jalal M. ;
Moudden, Yassir ;
Donoho, David L. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (11) :2675-2681
[10]   From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images [J].
Bruckstein, Alfred M. ;
Donoho, David L. ;
Elad, Michael .
SIAM REVIEW, 2009, 51 (01) :34-81