Nanoscale neuromorphic networks and criticality: a perspective

被引:27
作者
Dunham, Christopher S. [1 ]
Lilak, Sam [1 ]
Hochstetter, Joel [2 ]
Loeffler, Alon [2 ]
Zhu, Ruomin [2 ]
Chase, Charles [3 ]
Stieg, Adam Z. [4 ,5 ]
Kuncic, Zdenka [1 ,2 ,6 ]
Gimzewski, James K. [1 ,4 ,5 ,7 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90024 USA
[2] Univ Sydney, Sch Phys, Sydney, NSW, Australia
[3] UnLAB, Savannah, GA USA
[4] Univ Calif Los Angeles, Calif NanoSyst Inst, Los Angeles, CA 90024 USA
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton MANA, Tsukuba, Ibaraki, Japan
[6] Univ Sydney, Sydney Nano Inst, Sydney, NSW, Australia
[7] Kyushu Inst Technol, Kitakyushu, Fukuoka, Japan
来源
JOURNAL OF PHYSICS-COMPLEXITY | 2021年 / 2卷 / 04期
关键词
criticality; dynamical systems; neuromorphic networks; abiotic criticality; avalanche dynamics; memristive devices; atomic switch; NEURONAL AVALANCHES; COMPLEXITY; COMPUTATION; EDGE; FLUCTUATIONS; PERCEPTRON; PLASTICITY; SYSTEMS; BRAIN; CHAOS;
D O I
10.1088/2632-072X/ac3ad3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Numerous studies suggest critical dynamics may play a role in information processing and task performance in biological systems. However, studying critical dynamics in these systems can be challenging due to many confounding biological variables that limit access to the physical processes underpinning critical dynamics. Here we offer a perspective on the use of abiotic, neuromorphic nanowire networks as a means to investigate critical dynamics in complex adaptive systems. Neuromorphic nanowire networks are composed of metallic nanowires and possess metal-insulator-metal junctions. These networks self-assemble into a highly interconnected, variable-density structure and exhibit nonlinear electrical switching properties and information processing capabilities. We highlight key dynamical characteristics observed in neuromorphic nanowire networks, including persistent fluctuations in conductivity with power law distributions, hysteresis, chaotic attractor dynamics, and avalanche criticality. We posit that neuromorphic nanowire networks can function effectively as tunable abiotic physical systems for studying critical dynamics and leveraging criticality for computation.
引用
收藏
页数:11
相关论文
共 124 条
[1]   The mitochondrial origin of postischernic arrhythmias [J].
Akar, FG ;
Aon, MA ;
Tomaselli, GF ;
O'Rourke, B .
JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (12) :3527-3535
[2]   Percolation and criticality in a mitochondrial network [J].
Aon, MA ;
Cortassa, S ;
O'Rourke, B .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (13) :4447-4452
[3]   Complexity and the economy [J].
Arthur, WB .
SCIENCE, 1999, 284 (5411) :107-109
[4]   Neuromorphic Atomic Switch Networks [J].
Avizienis, Audrius V. ;
Sillin, Henry O. ;
Martin-Olmos, Cristina ;
Shieh, Hsien Hang ;
Aono, Masakazu ;
Stieg, Adam Z. ;
Gimzewski, James K. .
PLOS ONE, 2012, 7 (08)
[5]   EARTHQUAKES AS A SELF-ORGANIZED CRITICAL PHENOMENON [J].
BAK, P ;
TANG, C .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1989, 94 (B11) :15635-15637
[6]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[7]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[8]  
Beggs JM, 2003, J NEUROSCI, V23, P11167
[9]   Being critical of criticality in the brain [J].
Beggs, John M. ;
Timme, Nicholas .
FRONTIERS IN PHYSIOLOGY, 2012, 3
[10]   Real-time computation at the edge of chaos in recurrent neural networks [J].
Bertschinger, N ;
Natschläger, T .
NEURAL COMPUTATION, 2004, 16 (07) :1413-1436