On a long range segregation model

被引:6
作者
Caffarelli, L. [1 ]
Patrizi, S. [1 ]
Quitalo, V. [2 ]
机构
[1] Univ Texas Austin, Dept Math RLM 8 100, 2515 Speedway Stop C1200, Austin, TX 78712 USA
[2] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
Segregation of populations; free boundary problems; long-range interactions; 3-SPECIES COMPETITION SYSTEM; FREE-BOUNDARY PROBLEM; SPATIAL SEGREGATION; POSITIVE SOLUTIONS; ELLIPTIC-SYSTEMS; COEXISTENCE; DIFFUSION; LIMIT;
D O I
10.4171/JEMS/747
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the properties of segregation processes modeled by a family of equations L(u(i)) (x) = u(i) (x) F-i (u(1),..., u(K)) (x), i = 1,..., K, where Fi(u(1),..., u(K)) (x) is a non-local factor that takes into consideration the values of the functions u(j) in a full neighborhood of x. We consider as a model problem Delta u(i)(epsilon) (x) = 1/epsilon(2)u(i)(epsilon) (x) Sigma(i not equal j) H(u(j)(epsilon)) (x) where epsilon is a small parameter and H(u(j)(epsilon)) (x) is for instance H(u(j)(epsilon)) (x) = integral(B1(x)) u(j)(epsilon)(y) dy or H(u(j)(epsilon)) (x) = sup (y is an element of B1(x)) u(j)(epsilon) (y). Here B-1(x) is the unit ball centered at x with respect to a smooth, uniformly convex norm rho in R-n. Heuristically, this will force the populations to stay at rho-distance 1 from each other as epsilon -> 0.
引用
收藏
页码:3575 / 3628
页数:54
相关论文
共 33 条
[1]  
Ambrosio L., 2000, OX MATH M, pxviii, DOI [10.1017/S0024609301309281, 10.1093/oso/9780198502456.001.0001]
[2]   Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries [J].
Caffarelli, L. A. ;
Lin, Fang-Hua .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :847-862
[3]   The geometry of solutions to a segregation problem for nondivergence systems [J].
Caffarelli, L. A. ;
Karakhanyan, A. L. ;
Lin, Fang-Hua .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (02) :319-351
[4]   The obstacle problem revisited [J].
Caffarelli, LA .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1998, 4 (4-5) :383-402
[5]   On a price formation free boundary model by Lasry and Lions [J].
Caffarelli, Luis A. ;
Markowich, Peter A. ;
Pietschmann, Jan-F .
COMPTES RENDUS MATHEMATIQUE, 2011, 349 (11-12) :621-624
[6]  
Caffarelli Luis A., 1995, AM MATH SOC COLLOQ P, V43, DOI [10.1090/coll/043, DOI 10.1090/COLL/043]
[7]   Gauss-Green Theorem for Weakly Differentiable Vector Fields, Sets of Finite Perimeter, and Balance Laws [J].
Chen, Gui-Qiang ;
Torres, Monica ;
Ziemer, William P. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (02) :242-304
[8]   A regularity theory for optimal partition problems [J].
Conti, M ;
Verzini, G ;
Terracini, S .
SPT 2004: SYMMETRY AND PERTURBATION THEORY, 2005, :91-98
[9]   Asymptotic estimates for the spatial segregation of competitive systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :524-560
[10]   A variational problem for the spatial segregation of reaction-diffusion systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2005, 54 (03) :779-815