The Mars system revealed by the Martian Moons eXploration mission

被引:8
|
作者
Ogohara, Kazunori [1 ]
Nakagawa, Hiromu [2 ]
Aoki, Shohei [3 ,4 ]
Kouyama, Toru [5 ]
Usui, Tomohiro [6 ]
Terada, Naoki [2 ]
Imamura, Takeshi [7 ]
Montmessin, Franck [8 ]
Brain, David [9 ]
Doressoundiram, Alain [10 ]
Gautier, Thomas [8 ]
Hara, Takuya [11 ]
Harada, Yuki [12 ]
Ikeda, Hitoshi [13 ]
Koike, Mizuho [14 ]
Leblanc, Francois [15 ]
Ramirez, Ramses [16 ,17 ,25 ]
Sawyer, Eric [18 ]
Seki, Kanako [19 ]
Spiga, Aymeric [20 ,21 ]
Vandaele, Ann Carine [22 ]
Yokota, Shoichiro [23 ]
Barucci, Antonella [10 ]
Kameda, Shingo [24 ]
机构
[1] Kyoto Sangyo Univ, Fac Sci, Kita Ku, Kyoto, Japan
[2] Tohoku Univ, Grad Sch Sci, Aoba Ku, 6-3 Aramaki Aza Aoba, Sendai, Miyagi, Japan
[3] Univ Liege, STAR Inst, LPAP, Allee 6 Aout,19C, B-4000 Liege, Belgium
[4] Royal Belgian Inst Space Aeron, 3 Ave Circulaire, B-1180 Brussels, Belgium
[5] Natl Inst Adv Ind Sci & Technol, Artificial Intelligence Res Ctr, Koto Ku, 2-3-6 Aomi, Tokyo, Japan
[6] JAXA, Dept Solar Syst Sci, Inst Space & Astronaut Sci, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
[7] Univ Tokyo, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[8] Sorbonne Univ, UVSQ UPSaclay, CNRS, LATMOS IPSL, Guyancourt, France
[9] LASP Univ Colorado, Boulder, CO USA
[10] Univ Paris, Univ PSL, Sorbonne Univ, LESIA,Observ Paris,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France
[11] Univ Calif Berkeley, Space Sci Lab, 7 Gauss Way, Berkeley, CA 94720 USA
[12] Kyoto Univ, Grad Sch Sci, Sakyo Ku, Kitashirakawaoiwake Cho, Kyoto 6068502, Japan
[13] Japan Aerosp Explorat Agcy, Res & Dev Directorate, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 2525210, Japan
[14] Hiroshima Univ, Grad Sch Adv Sci & Engn, 1-3-1 Kagamiyama, Higashihiroshima, Hiroshima 7398526, Japan
[15] Sorbonne Univ, LATMOS CNRS, UVSQ, Paris, France
[16] Tokyo Inst Technol, Earth Life Sci Inst, Tokyo 1528550, Japan
[17] Space Sci Inst, Boulder, CO USA
[18] CNES, 18 Ave Edouard Belin, F-31400 Toulouse, France
[19] Univ Tokyo, Grad Sch Sci, Dept Earth & Planetary Sci, Bunkyo Ku, Hongo 7-3-1, Tokyo, Japan
[20] Sorbonne Univ, CNRS, Lab Meteorol Dynam,Ecole Polytech, Ecole Normale Super ENS,Inst Pierre Simon Laplace, Campus Pierre & Marie Curie BC99,4 Pl Jussieu, F-75005 Paris, France
[21] Inst Univ France, 1 Rue Descartes, F-75005 Paris, France
[22] Royal Belgian Inst Space Aeron, Ave Circulaire 3, B-1180 Brussels, Belgium
[23] Osaka Univ, Grad Sch Sci, Machikaneyama Cho, Toyonaka, Osaka, Japan
[24] Rikkyo Univ, 3-34-1 Nishi Ikebukuro, Tokyo 1718501, Japan
[25] Univ Cent Florida, Coll Sci, Dept Phys, 4111 Libra Dr,Phys Sci Bldg 430, Orlando, FL 32816 USA
来源
EARTH PLANETS AND SPACE | 2022年 / 74卷 / 01期
关键词
Mars; Mars system; Paleoclimate; Atmospheric escape; Water cycle; Dust cycle; Transport process; SOLAR-WIND INTERACTION; IONOSPHERIC PLASMA ESCAPE; ORBITER LASER ALTIMETER; WARMING EARLY MARS; ALLAN HILLS 84001; WATER-VAPOR; MAVEN OBSERVATIONS; ION ESCAPE; MAGNETIC RECONNECTION; ATMOSPHERIC ESCAPE;
D O I
10.1186/s40623-021-01417-0
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Japan Aerospace Exploration Agency (JAXA) plans a Phobos sample return mission (MMX: Martian Moons eXploration). In this study, we review the related works on the past climate of Mars, its evolution, and the present climate and weather to describe the scientific goals and strategies of the MMX mission regarding the evolution of the Martian surface environment. The MMX spacecraft will retrieve and return a sample of Phobos regolith back to Earth in 2029. Mars ejecta are expected to be accumulated on the surface of Phobos without being much shocked. Samples from Phobos probably contain all types of Martian rock from sedimentary to igneous covering all geological eras if ejecta from Mars could be accumulated on the Phobos surface. Therefore, the history of the surface environment of Mars can be restored by analyzing the returned samples. Remote sensing of the Martian atmosphere and monitoring ions escaping to space while the spacecraft is orbiting Mars in the equatorial orbit are also planned. The camera with multi-wavelength filters and the infrared spectrometer onboard the spacecraft can monitor rapid transport processes of water vapor, dust, ice clouds, and other species, which could not be traced by the previous satellites on the sun-synchronous polar orbit. Such time-resolved pictures of the atmospheric phenomena should be an important clue to understand both the processes of water exchange between the surface/underground reservoirs and the atmosphere and the drivers of efficient material transport to the upper atmosphere. The mass spectrometer with unprecedented mass resolution can observe ions escaping to space and monitor the atmospheric escape which has made the past Mars to evolve towards the cold and dry surface environment we know today. Together with the above two instruments, it can potentially reveal what kinds of atmospheric events can transport tracers (e.g., H2O) upward and enhance the atmospheric escape.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Emirates Mars Mission Characterization of Mars Atmosphere Dynamics and Processes
    Almatroushi, Hessa
    AlMazmi, Hoor
    AlMheiri, Noora
    AlShamsi, Mariam
    AlTunaiji, Eman
    Badri, Khalid
    Lillis, Robert J.
    Lootah, Fatma
    Yousuf, Maryam
    Amiri, Sarah
    Brain, David A.
    Chaffin, Michael
    Deighan, Justin
    Edwards, Christopher S.
    Forget, Francois
    Smith, Michael D.
    Wolff, Michael J.
    Christensen, Philip R.
    England, Scott
    Fillingim, Matthew
    Holsclaw, Gregory M.
    Jain, Sonal
    Jones, Andrew R.
    Osterloo, Mikki
    Jakosky, Bruce M.
    Luhmann, Janet G.
    Young, Roland M. B.
    SPACE SCIENCE REVIEWS, 2021, 217 (08)
  • [32] Automated generation of image products for mars exploration rover mission tactical operations
    Alexander, D
    Zamani, P
    Deen, R
    Andres, P
    Mortensen, H
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 923 - 929
  • [33] About feasibility of SpaceX's human exploration Mars mission scenario with Starship
    Maiwald, Volker
    Bauerfeind, Mika
    Faelker, Svenja
    Westphal, Bjarne
    Bach, Christian
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [34] Human factors research as part of a Mars exploration analogue mission on Devon Island
    Binsted, Kim
    Kobrick, Ryan L.
    Griofa, Marc O.
    Bishop, Sheryl
    Lapierre, Judith
    PLANETARY AND SPACE SCIENCE, 2010, 58 (7-8) : 994 - 1006
  • [35] The Ashima/MIT Mars GCM and argon in the martian atmosphere
    Lian, Yuan
    Richardson, Mark I.
    Newman, Claire E.
    Lee, Christopher
    Toigo, Anthony D.
    Mischna, Michael A.
    Campin, Jean-Michel
    ICARUS, 2012, 218 (02) : 1043 - 1070
  • [36] On Mars's Atmospheric Sputtering After MAVEN's First Martian Year of Measurements
    Leblanc, F.
    Martinez, A.
    Chaufray, J. Y.
    Modolo, R.
    Hara, T.
    Luhmann, J.
    Lillis, R.
    Curry, S.
    McFadden, J.
    Halekas, J.
    Jakosky, B.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (10) : 4685 - 4691
  • [37] Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission
    Lemmon, Mark T.
    Wolff, Michael J.
    Bell, James F., III
    Smith, Michael D.
    Cantor, Bruce A.
    Smith, Peter H.
    ICARUS, 2015, 251 : 96 - 111
  • [38] GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics
    Jürgen Oberst
    Valéry Lainey
    Christophe Le Poncin-Lafitte
    Veronique Dehant
    Pascal Rosenblatt
    Stephan Ulamec
    Jens Biele
    Jörn Spurmann
    Ralph Kahle
    Volker Klein
    Ulrich Schreiber
    Anja Schlicht
    Nicolas Rambaux
    Philippe Laurent
    Benoît Noyelles
    Bernard Foulon
    Alexander Zakharov
    Leonid Gurvits
    Denis Uchaev
    Scott Murchie
    Cheryl Reed
    Slava G. Turyshev
    Jesus Gil
    Mariella Graziano
    Konrad Willner
    Kai Wickhusen
    Andreas Pasewaldt
    Marita Wählisch
    Harald Hoffmann
    Experimental Astronomy, 2012, 34 : 243 - 271
  • [39] The Emirates Mars Mission
    H. E. S. Amiri
    D. Brain
    O. Sharaf
    P. Withnell
    M. McGrath
    M. Alloghani
    M. Al Awadhi
    S. Al Dhafri
    O. Al Hamadi
    H. Al Matroushi
    Z. Al Shamsi
    O. Al Shehhi
    M. Chaffin
    J. Deighan
    C. Edwards
    N. Ferrington
    B. Harter
    G. Holsclaw
    M. Kelly
    D. Kubitschek
    B. Landin
    R. Lillis
    M. Packard
    J. Parker
    E. Pilinski
    B. Pramman
    H. Reed
    S. Ryan
    C. Sanders
    M. Smith
    C. Tomso
    R. Wrigley
    H. Al Mazmi
    N. Al Mheiri
    M. Al Shamsi
    E. Al Tunaiji
    K. Badri
    P. Christensen
    S. England
    M. Fillingim
    F. Forget
    S. Jain
    B. M. Jakosky
    A. Jones
    F. Lootah
    J. G. Luhmann
    M. Osterloo
    M. Wolff
    M. Yousuf
    Space Science Reviews, 2022, 218
  • [40] Likelihood of Martian moons as dust sources in light with Juno observations
    Pabari, J. P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (01) : 1428 - 1440