Bounds for the largest and the smallest Aα eigenvalues of a graph in terms of vertex degrees

被引:24
作者
Wang, Sai [1 ,3 ]
Wong, Dein [1 ]
Tian, Fenglei [2 ]
机构
[1] China Univ Min & Technol, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
[2] Qufu Normal Univ, Sch Management, Rizhao 276826, Shandong, Peoples R China
[3] China Univ Min & Technol, Xuhai Coll, Xuzhou, Jiangsu, Peoples R China
关键词
A(alpha)-spectrum of graphs; Spectral radius; The smallest eigenvalue; A(ALPHA)-SPECTRAL RADIUS; SPECTRAL-RADIUS; ALPHA; MULTIPLICITY;
D O I
10.1016/j.laa.2019.12.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with adjacency matrix A(G) and with D(G) the diagonal matrix of its vertex degrees. Nikiforov defined the matrix A alpha(G), with alpha is an element of [0,1], as A alpha(G) = alpha D(G) + (1 - alpha)A(G). The largest and the smallest eigenvalues of A(alpha)(G) are respectively denoted by rho(G) and lambda(n)(G). In this paper, we present a tight upper bound for rho(G) in terms of the vertex degrees of G for alpha not equal 1. For any graph G, rho(G) <= max(u similar to w){alpha(d(u)+d(w))+root alpha(2)(d(u)+d(w))(2)+4(1-2 alpha)d(u)d(w)/2}. If G is connected, for a alpha is an element of [0,1), the equality holds if and only if G is regular or bipartite semi-regular. As an application, we solve the problem raised by Nikiforov in [15]. For the smallest eigenvalue lambda(n)(G) of a bipartite graph G of order n with no isolated vertices, for a alpha is an element of [0,1), then lambda(G) >= min(u similar to w){alpha(d(u)+d(w))-root alpha(2)(d(u)+d(w))(2)+4(1-2 alpha)d(u)d(w)/2}. If G is connected and alpha not equal 1/2, the equality holds if and only if G is regular or semi-regular. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:210 / 223
页数:14
相关论文
共 19 条
[1]  
Anderson Jr W. N., 1985, Linear Multilinear Algebra, V18, P141
[2]   On the multiplicity of a as an Aα(Γ)-eigenvalue of signed graphs with pendant vertices [J].
Belardo, Francesco ;
Brunetti, Maurizio ;
Ciampella, Adriana .
DISCRETE MATHEMATICS, 2019, 342 (08) :2223-2233
[3]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[4]   On the multiplicity of α as an eigenvalue of Aα(G) of graphs with pendant vertices [J].
Cardoso, Domingos M. ;
Pasten, Germain ;
Rojo, Oscar .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 552 :52-70
[5]   The clique number and the smallest Q-eigenvalue of graphs [J].
de Lima, Leonardo ;
Nikiforov, Vladimir ;
Oliveira, Carla .
DISCRETE MATHEMATICS, 2016, 339 (06) :1744-1752
[6]   The smallest eigenvalue of the signless Laplacian [J].
de Lima, Leonardo Silva ;
Oliveira, Carla Silva ;
Maia de Abreu, Nair Maria ;
Nikiforov, Vladimir .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (10) :2570-2584
[7]   A CHARACTERIZATION OF THE SMALLEST EIGENVALUE OF A GRAPH [J].
DESAI, M ;
RAO, V .
JOURNAL OF GRAPH THEORY, 1994, 18 (02) :181-194
[8]  
Guo H., ALPHA SPECTRAL RADIU
[9]   On the α-spectral radius of irregular uniform hypergraphs [J].
Lin, Hongying ;
Guo, Haiyan ;
Zhou, Bo .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (02) :265-277
[10]   On the Dα-spectra of graphs [J].
Lin, Huiqiu ;
Xue, Jie ;
Shu, Jinlong .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (06) :997-1019