Spatial Pythagorean-Hodograph B-Spline curves and 3D point data interpolation

被引:16
|
作者
Albrecht, Gudrun [1 ]
Beccari, Carolina Vittoria [2 ]
Romani, Lucia [2 ]
机构
[1] Univ Nacl Colombia, Sede Medellin, Escuela Matemat, Carrera 65 59A-110, Medellin, Colombia
[2] Univ Bologna, Dept Math, Pzza Porta San Donato 5, I-40127 Bologna, Italy
关键词
Non-uniform B-Spline; Space curve; Pythagorean-Hodograph; Interpolation; Fairness measure; Pipe surface; ROTATION-MINIMIZING FRAMES; C-2 HERMITE INTERPOLATION;
D O I
10.1016/j.cagd.2020.101868
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article deals with the spatial counterpart of the recently introduced class of planar Pythagorean-Hodograph (PH) B-Spline curves. Spatial Pythagorean-Hodograph B-Spline curves are odd-degree, non-uniform, parametric spatial B-Spline curves whose arc length is a B-Spline function of the curve parameter and can thus be computed explicitly without numerical quadrature. After giving a general definition for this new class of curves, we exploit quaternion algebra to provide an elegant description of their coordinate components and useful formulae for the construction of their control polygon. We hence consider the interpolation of spatial point data by clamped and closed PH B-Spline curves of arbitrary odd degree and discuss how degree-(2n + 1), C-n-continuous PH B-Spline curves can be computed by optimizing several scale-invariant fairness measures with interpolation constraints. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [11] B-Spline Pythagorean Hodograph Curves in Clifford Algebras
    Michal Bizzarri
    Kryštof Kadlec
    Miroslav Lávička
    Zbyněk Šír
    Advances in Applied Clifford Algebras, 2023, 33
  • [12] An approach to geometric interpolation by Pythagorean-hodograph curves
    Gašper Jaklič
    Jernej Kozak
    Marjeta Krajnc
    Vito Vitrih
    Emil Žagar
    Advances in Computational Mathematics, 2012, 37 : 123 - 150
  • [13] B-Spline Pythagorean Hodograph Curves in Clifford Algebras
    Bizzarri, Michal
    Kadlec, Krystof
    Lavicka, Miroslav
    Sir, Zbynek
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2023, 33 (01)
  • [14] Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves
    Rida T. Farouki
    Mohammad al-Kandari
    Takis Sakkalis
    Advances in Computational Mathematics, 2002, 17 : 369 - 383
  • [15] Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves
    Farouki, RT
    al-Kandari, M
    Sakkalis, T
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2002, 17 (04) : 369 - 383
  • [16] Planar projections of spatial Pythagorean-hodograph curves
    Farouki, Rida T.
    Knez, Marjeta
    Vitrih, Vito
    Zagar, Emil
    COMPUTER AIDED GEOMETRIC DESIGN, 2021, 91
  • [17] Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics
    Francesca Pelosi
    Rida T. Farouki
    Carla Manni
    Alessandra Sestini
    Advances in Computational Mathematics, 2005, 22 : 325 - 352
  • [18] Geometric hermite interpolation by spatial pythagorean-hodograph cubics
    Pelosi, F
    Farouki, RT
    Manni, C
    Sestini, A
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2005, 22 (04) : 325 - 352
  • [19] Interpolation by G2 Quintic Pythagorean-Hodograph Curves
    Jaklic, Gasper
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    Zagar, Emil
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2014, 7 (03) : 374 - 398
  • [20] Geometric Lagrange interpolation by planar cubic Pythagorean-hodograph curves
    Jaklic, Gasper
    Kozak, Jernej
    Krajnc, Marjeta
    Vitrih, Vito
    Zagar, Emil
    COMPUTER AIDED GEOMETRIC DESIGN, 2008, 25 (09) : 720 - 728