Generalizations of the constrained mock-Chebyshev least squares in two variables: Tensor product vs total degree polynomial interpolation

被引:20
作者
Dell'Accio, Francesco [1 ,2 ]
Di Tommaso, Filomena [1 ,2 ]
Nudo, Federico [1 ]
机构
[1] Univ Calabria, Dept Math & Comp Sci, Arcavacata Di Rende, CS, Italy
[2] CNR, Ist Applicaz Calcolo Mauro Picone, Naples Branch, Natl Res Council Italy, Naples, Italy
关键词
Chebyshev-Lobatto nodes; Mock-Chebyshev interpolation; Tensor product interpolation; Mock-Padua interpolation; Constrained least squares; BIVARIATE LAGRANGE INTERPOLATION; PADUA POINTS;
D O I
10.1016/j.aml.2021.107732
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The constrained mock-Chebyshev least squares interpolation is a univariate polynomial interpolation technique exploited to cut-down the Runge phenomenon. It takes advantage of the optimality of the interpolation on the mock-Chebyshev nodes, i.e. the subset of the uniform grid formed by nodes that mimic the behavior of Chebyshev-Lobatto nodes. The other nodes of the grid are not discarded, rather they are used in a simultaneous regression to improve the accuracy of the approximation of the mock-Chebyshev subset interpolant. In this paper we extend the univariate constrained mock-Chebyshev least squares interpolation to the bivariate case in two different ways, relying on the tensor product interpolation and on the interpolation at the mock-Padua nodes. Numerical experiments demonstrate the effectiveness of such extensions. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 18 条
[1]   Treating the Gibbs phenomenon in barycentric rational interpolation and approximation via the S-Gibbs algorithm [J].
Berrut, J-P ;
De Marchi, S. ;
Elefante, G. ;
Marchetti, F. .
APPLIED MATHEMATICS LETTERS, 2020, 103
[2]  
Bjorck A, 1996, Numerical Methods for Least Squares Problems
[3]   Bivariate Lagrange interpolation at the Padua points: the ideal theory approach [J].
Bos, Len ;
De Marchi, Stefano ;
Vianello, Marco ;
Xu, Yuan .
NUMERISCHE MATHEMATIK, 2007, 108 (01) :43-57
[4]   Bivariate Lagrange interpolation at the Padua points: The generating curve approach [J].
Bos, Len ;
Caliari, Marco ;
De Marchi, Stefano ;
Vianello, Marco ;
Xu, Yuan .
JOURNAL OF APPROXIMATION THEORY, 2006, 143 (01) :15-25
[5]   Divergence (Runge Phenomenon) for least-squares polynomial approximation on an equispaced grid and Mock-Chebyshev subset interpolation [J].
Boyd, John P. ;
Xu, Fei .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (01) :158-168
[6]  
Boyd S, 2018, INTRO APPL LINEAR AL
[7]   Algorithm 886: Padua2D-Lagrange Interpolation at Padua Points on Bivariate Domains [J].
Caliari, Marco ;
De Marchi, Stefano ;
Vianello, Marco .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03)
[8]  
Cheney Elliott Ward, 2009, A Course in Approximation Theory, V101
[9]   Multivariate approximation at fake nodes [J].
De Marchi, S. ;
Marchetti, F. ;
Perracchione, E. ;
Poggiali, D. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
[10]   Polynomial interpolation via mapped bases without resampling [J].
De Marchi, S. ;
Marchetti, F. ;
Perracchione, E. ;
Poggiali, D. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 364