A Survey of Validation Strategies for CRISPR-Cas9 Editing

被引:234
作者
Sentmanat, Monica F. [2 ]
Peters, Samuel T. [1 ]
Florian, Colin P. [2 ]
Connelly, Jon P. [1 ]
Pruett-Miller, Shondra M. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Cell & Mol Biol, Memphis, TN 38105 USA
[2] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
MISMATCH CLEAVAGE; BACTERIOPHAGE-T7; MUTATIONS; SPECIFICITY; ENRICHMENT; ENZYME; CELLS;
D O I
10.1038/s41598-018-19441-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The T7 endonuclease 1 (T7E1) mismatch detection assay is a widely used method for evaluating the activity of site-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. To determine the accuracy and sensitivity of this assay, we compared the editing estimates derived by the T7E1 assay with that of targeted next-generation sequencing (NGS) in pools of edited mammalian cells. Here, we report that estimates of nuclease activity determined by T7E1 most often do not accurately reflect the activity observed in edited cells. Editing efficiencies of CRISPR-Cas9 complexes with similar activity by T7E1 can prove dramatically different by NGS. Additionally, we compared editing efficiencies predicted by the Tracking of Indels by Decomposition (TIDE) assay and the Indel Detection by Amplicon Analysis (IDAA) assay to that observed by targeted NGS for both cellular pools and single-cell derived clones. We show that targeted NGS, TIDE, and IDAA assays predict similar editing efficiencies for pools of cells but that TIDE and IDAA can miscall alleles in edited clones.
引用
收藏
页数:8
相关论文
共 50 条
[21]   A REVIEW ON GENOME EDITING BY CRISPR-CAS9 TECHNIQUE FOR CANCER TREATMENT [J].
Khan, M. Niuz Morshed ;
Islam, K. Khaldun ;
Ashraf, A. ;
Barman, N. Chandra .
WORLD CANCER RESEARCH JOURNAL, 2020, 7
[22]   Modelling the Cancer Phenotype in the Era of CRISPR-Cas9 Gene Editing [J].
Stewart, J. ;
Banerjee, S. ;
Pettitt, S. J. ;
Lord, C. J. .
CLINICAL ONCOLOGY, 2020, 32 (02) :69-74
[23]   Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery [J].
Andersson, Mariette ;
Turesson, Helle ;
Olsson, Niklas ;
Falt, Ann-Sofie ;
Ohlsson, Pia ;
Gonzalez, Matias N. ;
Samuelsson, Mathias ;
Hofvander, Per .
PHYSIOLOGIA PLANTARUM, 2018, 164 (04) :378-384
[24]   Is microfluidics the "assembly line" for CRISPR-Cas9 gene-editing? [J].
Ahmadi, Fatemeh ;
Quach, Angela B. V. ;
Shih, Steve C. C. .
BIOMICROFLUIDICS, 2020, 14 (06)
[25]   CRISPR-Cas9 in genome editing: Its function and medical applications [J].
Khadempar, Saedeh ;
Familghadakchi, Shokoufeh ;
Motlagh, Roozbeh Akbari ;
Farahani, Najmeh ;
Dashtiahangar, Maryam ;
Rezaei, Hamzeh ;
Hayat, Seyed Mohammad Gheibi .
JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (05) :5751-5761
[26]   Battling CRISPR-Cas9 off-target genome editing [J].
Li, Daisy ;
Zhou, Hong ;
Zeng, Xiao .
CELL BIOLOGY AND TOXICOLOGY, 2019, 35 (05) :403-406
[27]   CRISPR-Cas9 delivery strategies and applications: Review and update [J].
Severi, Ali Alizadeh ;
Akbari, Bahman .
GENESIS, 2024, 62 (03)
[28]   Permanent Alteration of PCSK9 With In Vivo CRISPR-Cas9 Genome Editing [J].
Ding, Qiurong ;
Strong, Alanna ;
Patel, Kevin M. ;
Ng, Sze-Ling ;
Gosis, Bridget S. ;
Regan, Stephanie N. ;
Cowan, Chad A. ;
Rader, Daniel J. ;
Musunuru, Kiran .
CIRCULATION RESEARCH, 2014, 115 (05) :488-+
[29]   CRISPR-Cas9 Gene Editing in Lizards through Microinjection of Unfertilized Oocytes [J].
Rasys, Ashley M. ;
Park, Sungdae ;
Ball, Rebecca E. ;
Alcala, Aaron J. ;
Lauderdale, James D. ;
Menke, Douglas B. .
CELL REPORTS, 2019, 28 (09) :2288-+
[30]   CRISPR-Cas9 gene editing causes alternative splicing of the targeting mRNA [J].
Zhang, Qian ;
Fu, Yao ;
Thakur, Chitra ;
Bi, Zhuoyue ;
Wadgaonkar, Priya ;
Qiu, Yiran ;
Xu, Liping ;
Rice, M'Kya ;
Zhang, Wenxuan ;
Almutairy, Bandar ;
Chen, Fei .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2020, 528 (01) :54-61