A Survey of Validation Strategies for CRISPR-Cas9 Editing

被引:223
作者
Sentmanat, Monica F. [2 ]
Peters, Samuel T. [1 ]
Florian, Colin P. [2 ]
Connelly, Jon P. [1 ]
Pruett-Miller, Shondra M. [1 ]
机构
[1] St Jude Childrens Res Hosp, Dept Cell & Mol Biol, Memphis, TN 38105 USA
[2] Washington Univ, Sch Med, Dept Genet, St Louis, MO 63110 USA
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
MISMATCH CLEAVAGE; BACTERIOPHAGE-T7; MUTATIONS; SPECIFICITY; ENRICHMENT; ENZYME; CELLS;
D O I
10.1038/s41598-018-19441-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The T7 endonuclease 1 (T7E1) mismatch detection assay is a widely used method for evaluating the activity of site-specific nucleases, such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system. To determine the accuracy and sensitivity of this assay, we compared the editing estimates derived by the T7E1 assay with that of targeted next-generation sequencing (NGS) in pools of edited mammalian cells. Here, we report that estimates of nuclease activity determined by T7E1 most often do not accurately reflect the activity observed in edited cells. Editing efficiencies of CRISPR-Cas9 complexes with similar activity by T7E1 can prove dramatically different by NGS. Additionally, we compared editing efficiencies predicted by the Tracking of Indels by Decomposition (TIDE) assay and the Indel Detection by Amplicon Analysis (IDAA) assay to that observed by targeted NGS for both cellular pools and single-cell derived clones. We show that targeted NGS, TIDE, and IDAA assays predict similar editing efficiencies for pools of cells but that TIDE and IDAA can miscall alleles in edited clones.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] gRNA validation for wheat genome editing with the CRISPR-Cas9 system
    Arndell, Taj
    Sharma, Niharika
    Langridge, Peter
    Baumann, Ute
    Watson-Haigh, Nathan S.
    Whitford, Ryan
    BMC BIOTECHNOLOGY, 2019, 19 (01)
  • [2] CRISPR-Cas9: A Potent Gene-editing Tool for the Treatment of Cancer
    Mishra, Gauri
    Srivastava, Kamakshi
    Rais, Juhi
    Dixit, Manish
    Singh, Vandana Kumari
    Mishra, Lokesh Chandra
    CURRENT MOLECULAR MEDICINE, 2024, 24 (02) : 191 - 204
  • [3] Photoactivatable CRISPR-Cas9 for optogenetic genome editing
    Nihongaki, Yuta
    Kawano, Fuun
    Nakajima, Takahiro
    Sato, Moritoshi
    NATURE BIOTECHNOLOGY, 2015, 33 (07) : 755 - 760
  • [4] Inducible in vivo genome editing with CRISPR-Cas9
    Dow, Lukas E.
    Fisher, Jonathan
    O'Rourke, Kevin P.
    Muley, Ashlesha
    Kastenhuber, Edward R.
    Livshits, Geulah
    Tschaharganeh, Darjus F.
    Socci, Nicholas D.
    Lowe, Scott W.
    NATURE BIOTECHNOLOGY, 2015, 33 (04) : 390 - U98
  • [5] DNA sequencing and CRISPR-Cas9 gene editing for target validation in mammalian cells
    Smurnyy, Yegor
    Cai, Mi
    Wu, Hua
    McWhinnie, Elizabeth
    Tallarico, John A.
    Yang, Yi
    Feng, Yan
    NATURE CHEMICAL BIOLOGY, 2014, 10 (08) : 623 - U152
  • [6] Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing
    Gong Shaohua
    Li Na
    Tang Bo
    ACTA CHIMICA SINICA, 2020, 78 (07) : 634 - 641
  • [7] Application of CRISPR-Cas9 gene editing to treat HBV
    Yan, Kun
    Feng, Jiangpeng
    Xiong, Yong
    Chen, Yu
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (30): : 3142 - 3150
  • [8] CRISPR-Cas9 Genome Editing for Treatment of Atherogenic Dyslipidemia
    Chadwick, Alexandra C.
    Musunuru, Kiran
    ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2018, 38 (01) : 12 - 18
  • [9] Temperature effect on CRISPR-Cas9 mediated genome editing
    Xiang, Guanghai
    Zhang, Xingying
    An, Chenrui
    Cheng, Chen
    Wang, Haoyi
    JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (04) : 199 - 205
  • [10] Bioethical issues in genome editing by CRISPR-Cas9 technology
    Ayanoglu, Fatma Betul
    Elcin, Ayse Eser
    Elcin, Yasar Murat
    TURKISH JOURNAL OF BIOLOGY, 2020, 44 (02) : 110 - 120