Complexity issues in natural gradient descent method for training multilayer perceptrons

被引:53
作者
Yang, HH [1 ]
Amari, S
机构
[1] Oregon Grad Inst, Dept Comp Sci, Portland, OR 97291 USA
[2] RIKEN, Brain Sci Inst, Lab Informat Synth, Wako, Saitama 35101, Japan
关键词
D O I
10.1162/089976698300017007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The natural gradient descent method is applied to train an n-m-1 multilayer perceptron. Based on an efficient scheme to represent the Fisher information matrix for an n-m-1 stochastic multilayer perceptron, a new algorithm is proposed to calculate the natural gradient without inverting the Fisher information matrix explicitly. When the input dimension n is much larger than the number of hidden neurons m, the time complexity of computing the natural gradient is O(n).
引用
收藏
页码:2137 / 2157
页数:21
相关论文
共 9 条
  • [1] Natural gradient works efficiently in learning
    Amari, S
    [J]. NEURAL COMPUTATION, 1998, 10 (02) : 251 - 276
  • [2] Amari S, 1997, ADV NEUR IN, V9, P127
  • [3] ORR GB, 1997, ADV NEURAL INFORMATI, V9
  • [4] ONLINE LEARNING IN SOFT COMMITTEE MACHINES
    SAAD, D
    SOLLA, SA
    [J]. PHYSICAL REVIEW E, 1995, 52 (04): : 4225 - 4243
  • [5] Stewart GW., 1973, INTRO MATRIX COMPUTA
  • [6] Statistical inference: learning in artificial neural networks
    Yang, HH
    Murata, N
    Amari, S
    [J]. TRENDS IN COGNITIVE SCIENCES, 1998, 2 (01) : 4 - 10
  • [7] YANG HH, 1997, ICONIP 97 P NZ
  • [8] YANG HH, 1997, UNPUB NATURAL GRADIE
  • [9] YANG HH, 1998, ADV NEURAL INFORMATI, V10