Complexity issues in natural gradient descent method for training multilayer perceptrons

被引:54
作者
Yang, HH [1 ]
Amari, S
机构
[1] Oregon Grad Inst, Dept Comp Sci, Portland, OR 97291 USA
[2] RIKEN, Brain Sci Inst, Lab Informat Synth, Wako, Saitama 35101, Japan
关键词
D O I
10.1162/089976698300017007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The natural gradient descent method is applied to train an n-m-1 multilayer perceptron. Based on an efficient scheme to represent the Fisher information matrix for an n-m-1 stochastic multilayer perceptron, a new algorithm is proposed to calculate the natural gradient without inverting the Fisher information matrix explicitly. When the input dimension n is much larger than the number of hidden neurons m, the time complexity of computing the natural gradient is O(n).
引用
收藏
页码:2137 / 2157
页数:21
相关论文
共 9 条
[1]   Natural gradient works efficiently in learning [J].
Amari, S .
NEURAL COMPUTATION, 1998, 10 (02) :251-276
[2]  
Amari S, 1997, ADV NEUR IN, V9, P127
[3]  
ORR GB, 1997, ADV NEURAL INFORMATI, V9
[4]   ONLINE LEARNING IN SOFT COMMITTEE MACHINES [J].
SAAD, D ;
SOLLA, SA .
PHYSICAL REVIEW E, 1995, 52 (04) :4225-4243
[5]  
Stewart GW., 1973, INTRO MATRIX COMPUTA
[6]   Statistical inference: learning in artificial neural networks [J].
Yang, HH ;
Murata, N ;
Amari, S .
TRENDS IN COGNITIVE SCIENCES, 1998, 2 (01) :4-10
[7]  
YANG HH, 1997, ICONIP 97 P NZ
[8]  
YANG HH, 1997, UNPUB NATURAL GRADIE
[9]  
YANG HH, 1998, ADV NEURAL INFORMATI, V10