Biorefinery aspects for cost-effective production of nanocellulose and high value-added biocomposites

被引:23
作者
Reshmy, R. [1 ]
Philip, Eapen [1 ]
Madhavan, Aravind [2 ]
Tarfdar, Ayon [3 ]
Sindhu, Raveendran [4 ]
Binod, Parameswaran [4 ]
Sirohi, Ranjna [5 ,6 ]
Awasthi, Mukesh Kumar [7 ]
Pandey, Ashok [6 ,8 ]
机构
[1] Bishop Moore Coll, Post Grad & Res Dept Chem, Mavelikara 690110, Kerala, India
[2] Rajiv Gandhi Ctr Biotechnol, Thiruvananthapuram 695014, Kerala, India
[3] ICAR Indian Vet Res Inst, Livestock Prod & Management Sect, Bareilly 243122, Uttar Pradesh, India
[4] CSIR, Microbial Proc & Technol Div, Natl Inst Interdisciplinary Sci & Technol, Trivandrum 695019, Kerala, India
[5] Korea Univ, Dept Chem & Biol Engn, Seoul, South Korea
[6] Ctr Energy & Environm Sustainabil, Lucknow 226029, Uttar Pradesh, India
[7] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Shaanxi, Peoples R China
[8] CSIR, Ctr Innovat & Translat Res, Indian Inst Toxicol Res, Lucknow 226001, Uttar Pradesh, India
关键词
Nanocellulose; Enzymatic hydrolysis; Biomass; Biocomposite; Value-added products; CELLULOSE NANOCRYSTALS; INDUSTRIAL-WASTE; FIBERS; EXTRACTION; NANOFIBERS; IONS; OPTIMIZATION; REMOVAL; BIOMASS; STRAW;
D O I
10.1016/j.fuel.2021.122575
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Biomass waste can originate from a range of sectors, including agricultural, forestry, aquatic, and industrial waste. In order to establish a cost-effective biorefinery technology for industrializing nanocellulose-derived biomaterials, optimization of various factors affecting bioprocess is necessary. This article presents an overview of various cost-effective and greener enzymatic preparation strategies, mechanism of cellulose deconstruction and reconstruction, as well as the factors affecting bioprocesses is presented. It also discusses the role of endoglucanase, cellubiohydrolase and lytic polysaccharide monooxygenases in the enzymatic hydrolysis of process of cellulose. The potential applications of nanocellulose biocomposites in various promising fields are further presented and discussed in detail.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Low-cost production of 6G-fructofuranosidase with high value-added astaxanthin by Xanthophyllomyces dendrorhous [J].
Ning, Yawei ;
Li, Qiang ;
Chen, Feng ;
Yang, Na ;
Jin, Zhengyu ;
Xu, Xueming .
BIORESOURCE TECHNOLOGY, 2012, 104 :660-667
[42]   An Olive Tree Pruning Biorefinery for Co-Producing High Value-Added Bioproducts and Biofuels: Economic and Energy Efficiency Analysis [J].
Romero-Garcia, J. M. ;
Sanchez, A. ;
Rendon-Acosta, G. ;
Martinez-Patino, J. C. ;
Ruiz, E. ;
Magana, G. ;
Castro, E. .
BioEnergy Research, 2016, 9 (04) :1070-1086
[43]   Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products [J].
Lee, Haeyoung ;
Sohn, Yu Jung ;
Jeon, Subeen ;
Yang, Hyoju ;
Son, Jina ;
Kim, Yu Jin ;
Park, Si Jae .
BIORESOURCE TECHNOLOGY, 2023, 376
[44]   Production of antioxidants and other value-added compounds from coffee silverskin via pyrolysis under a biorefinery approach [J].
del Pozo, Cristina ;
Bartroli, Jordi ;
Alier, Santi ;
Puy, Neus ;
Fabregas, Esteve .
WASTE MANAGEMENT, 2020, 109 (109) :19-27
[45]   Pulp and paper mill wastes: utilizations and prospects for high value-added biomaterials [J].
Haile, Adane ;
Gelebo, Gemeda Gebino ;
Tesfaye, Tamrat ;
Mengie, Wassie ;
Mebrate, Million Ayele ;
Abuhay, Amare ;
Limeneh, Derseh Yilie .
BIORESOURCES AND BIOPROCESSING, 2021, 8 (01)
[46]   High value-added syngas production by supercritical water gasification of biomass: Optimal reactor design [J].
Xu, Jialing ;
Miao, Qing ;
Huang, Chengwei ;
Jin, Hui ;
Liu, Shanke ;
Yu, Lijun .
APPLIED THERMAL ENGINEERING, 2024, 238
[47]   Biorefining of corn stover for efficient production of bioethanol, biodiesel, biomethane, and value-added byproducts [J].
Alavijeh, Razieh Shafiei ;
Shahvandi, Amin ;
Okoro, Oseweuba Valentine ;
Denayer, Joeri F. M. ;
Karimi, Keikhosro .
ENERGY CONVERSION AND MANAGEMENT, 2023, 283
[48]   Opportunity for high value-added chemicals from food supply chain wastes [J].
Matharu, Avtar S. ;
de Melo, Eduardo M. ;
Houghton, Joseph A. .
BIORESOURCE TECHNOLOGY, 2016, 215 :123-130
[49]   Enzymatic Hydrolysis of Fish Waste as an Alternative to Produce High Value-Added Products [J].
Araujo, J. ;
Sica, P. ;
Costa, C. ;
Marquez, M. C. .
WASTE AND BIOMASS VALORIZATION, 2021, 12 (02) :847-855
[50]   Crustacean waste biorefinery as a sustainable cost-effective business model [J].
Vicente, Filipa A. ;
Ventura, Sonia P. M. ;
Passos, Helena ;
Dias, Ana C. R. V. ;
Torres-Acosta, Mario A. ;
Novak, Uros ;
Likozar, Blaz .
CHEMICAL ENGINEERING JOURNAL, 2022, 442