Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence

被引:138
作者
Holzinger, Andreas [1 ,2 ]
Dehmer, Matthias [3 ,4 ]
Emmert-Streib, Frank [5 ]
Cucchiara, Rita [7 ,8 ]
Augenstein, Isabelle [9 ]
Del Ser, Javier [14 ,15 ]
Samek, Wojciech [16 ]
Jurisica, Igor [10 ,11 ,12 ,13 ]
Diaz-Rodriguez, Natalia [6 ]
机构
[1] Med Univ Graz, Graz, Austria
[2] Univ Alberta, Alberta Machine Intelligence Inst, Edmonton, AB, Canada
[3] Univ Med Informat Tyrol, Hall In Tirol, Austria
[4] Swiss Distance Univ Appl Sci, Brig, Switzerland
[5] Tampere Univ, Fac Informat Technol & Commun Sci, Predict Soc & Data Analyt Lab, Tampere, Finland
[6] Univ Granada, DaSCI Inst, Andalusian Res Inst Data Sci & Computat Intellige, Granada, Spain
[7] Univ Modena & Reggio Emilia, Modena, Italy
[8] Artificial Intelligence Res & Innovat Ctr, Modena, Italy
[9] Univ Copenhagen, Dept Comp Sci, Copenhagen, Denmark
[10] Univ Hlth Network, Schroeder Arthrit Inst, Div Orthoped Surg, Osteoarthrit Res Program, Toronto, ON, Canada
[11] Univ Hlth Network, Data Sci Discovery Ctr Chron Dis, Krembil Res Inst, Toronto, ON, Canada
[12] Univ Toronto, Dept Med Biophys, Toronto, ON, Canada
[13] Slovak Acad Sci, Inst Neuroimmunol, Bratislava, Slovakia
[14] TECNALIA, Basque Res & Technol Alliance BRTA, Derio, Spain
[15] Univ Basque Country UPV EHU, Bilbao, Spain
[16] Fraunhofer Heinrich Hertz Inst, Dept Artificial Intelligence, Berlin, Germany
基金
加拿大自然科学与工程研究理事会; 奥地利科学基金会; 加拿大创新基金会; 欧盟地平线“2020”;
关键词
Artificial intelligence; Information fusion; Medical AI; Explainable AI; Robustness; Explainability; Trust; Graph-based machine learning; Neural-symbolic learning and reasoning; NETWORK ANALYSIS; PROTEIN; MODEL; CENTRALITY; DATABASE; OPPORTUNITIES; ORGANIZATION; DEFINITION; PREDICTION; MODULARITY;
D O I
10.1016/j.inffus.2021.10.007
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical artificial intelligence (AI) systems have been remarkably successful, even outperforming human performance at certain tasks. There is no doubt that AI is important to improve human health in many ways and will disrupt various medical workflows in the future. Using AI to solve problems in medicine beyond the lab, in routine environments, we need to do more than to just improve the performance of existing AI methods. Robust AI solutions must be able to cope with imprecision, missing and incorrect information, and explain both the result and the process of how it was obtained to a medical expert. Using conceptual knowledge as a guiding model of reality can help to develop more robust, explainable, and less biased machine learning models that can ideally learn from less data. Achieving these goals will require an orchestrated effort that combines three complementary Frontier Research Areas: (1) Complex Networks and their Inference, (2) Graph causal models and counterfactuals, and (3) Verification and Explainability methods. The goal of this paper is to describe these three areas from a unified view and to motivate how information fusion in a comprehensive and integrative manner can not only help bring these three areas together, but also have a transformative role by bridging the gap between research and practical applications in the context of future trustworthy medical AI. This makes it imperative to include ethical and legal aspects as a cross-cutting discipline, because all future solutions must not only be ethically responsible, but also legally compliant.
引用
收藏
页码:263 / 278
页数:16
相关论文
共 236 条
[1]   Deep Learning with Differential Privacy [J].
Abadi, Martin ;
Chu, Andy ;
Goodfellow, Ian ;
McMahan, H. Brendan ;
Mironov, Ilya ;
Talwar, Kunal ;
Zhang, Li .
CCS'16: PROCEEDINGS OF THE 2016 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2016, :308-318
[2]  
Acland A, 2013, NUCLEIC ACIDS RES, V41, pD8, DOI [10.1093/nar/gks1189, 10.1093/nar/gkx1095, 10.1093/nar/gkq1172]
[3]  
Andrew G, 2013, INT C MACH LEARN, V28
[4]  
[Anonymous], ARXIV180512152
[5]  
Arco J.E., ARXIV201114894
[6]  
Ashburner M, 2001, GENOME RES, V11, P1425, DOI 10.1101/gr.180801
[7]  
Atanasova P, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P3168
[8]   DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome [J].
Azarkhalili, Behrooz ;
Saberi, Ali ;
Chitsaz, Hamidreza ;
Sharifi-Zarchi, Ali .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[10]   The Universal Protein Resource (UniProt) 2009 [J].
Bairoch, Amos ;
Consortium, UniProt ;
Bougueleret, Lydie ;
Altairac, Severine ;
Amendolia, Valeria ;
Auchincloss, Andrea ;
Argoud-Puy, Ghislaine ;
Axelsen, Kristian ;
Baratin, Delphine ;
Blatter, Marie-Claude ;
Boeckmann, Brigitte ;
Bolleman, Jerven ;
Bollondi, Laurent ;
Boutet, Emmanuel ;
Quintaje, Silvia Braconi ;
Breuza, Lionel ;
Bridge, Alan ;
deCastro, Edouard ;
Ciapina, Luciane ;
Coral, Danielle ;
Coudert, Elisabeth ;
Cusin, Isabelle ;
Delbard, Gwennaelle ;
Dornevil, Dolnide ;
Roggli, Paula Duek ;
Duvaud, Severine ;
Estreicher, Anne ;
Famiglietti, Livia ;
Feuermann, Marc ;
Gehant, Sebastian ;
Farriol-Mathis, Nathalie ;
Ferro, Serenella ;
Gasteiger, Elisabeth ;
Gateau, Alain ;
Gerritsen, Vivienne ;
Gos, Arnaud ;
Gruaz-Gumowski, Nadine ;
Hinz, Ursula ;
Hulo, Chantal ;
Hulo, Nicolas ;
James, Janet ;
Jimenez, Silvia ;
Jungo, Florence ;
Junker, Vivien ;
Kappler, Thomas ;
Keller, Guillaume ;
Lachaize, Corinne ;
Lane-Guermonprez, Lydie ;
Langendijk-Genevaux, Petra ;
Lara, Vicente .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D169-D174