Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987-2015)

被引:202
作者
Estoque, Ronald C. [1 ]
Murayama, Yuji [2 ]
机构
[1] Natl Inst Environm Studies, 16-2 Onogawa, Tsukuba, Ibaraki 3058506, Japan
[2] Univ Tsukuba, Fac Life & Environm Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058572, Japan
基金
日本学术振兴会;
关键词
Urban heat island; Land surface temperature; Remote sensing; Impervious surface; Green space; Baguio City; SERVICE VALUE CHANGES; LANDSCAPE PATTERN; AIR-TEMPERATURE; IMPERVIOUS SURFACE; SPATIAL-PATTERN; VEGETATION; COVER; IMPACTS; CONFIGURATION; BAGUIO;
D O I
10.1016/j.isprsjprs.2017.09.008
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Since it was first described about two centuries ago and due to its adverse impacts on urban ecological environment and the overall livability of cities, the urban heat island (UHI) phenomenon has been, and still is, an important research topic across various fields of study. However, UHI studies on cities in mountain regions are still lacking. This study aims to contribute to this endeavor by monitoring and examining the formation of surface UHI (SUHI) in a tropical mountain city of Southeast Asia-Baguio City, the summer capital of the Philippines- using Landsat data (1987-2015). Based on mean surface temperature difference between impervious surface (IS) and green space (GS1), SUHI intensity (SUHII) in the study area increased from 2.7 degrees C in 1987 to 3.4 degrees C in 2015. Between an urban zone (>86% impervious) and a rural zone (<10% impervious) along the urban-rural gradient, it increased from 4.0 degrees C in 1987 to 8.2 degrees C in 2015. These results are consistent with the rapid urbanization of the area over the same period, which resulted in a rapid expansion of impervious surfaces and substantial loss of green spaces. Together with landscape composition variables (e.g. fraction of IS), topographic variables (e.g. hillshade) can help explain a significant amount of spatial variations in surface temperature in the area (R-2 = 0.56-0.85) (p < 0.001). The relative importance of the 'fraction of IS' variable also increased, indicating that its unique explanatory and predictive power concerning the spatial variations of surface temperature increases as the city size becomes bigger and SUHI gets more intense. Overall, these results indicate that the cool temperature of the study area being situated in a mountain region did not hinder the formation of SUHI. Thus, the formation and effects of UHIs, including possible mitigation and adaptation measures, should be considered in landscape planning for the sustainable urban development of the area. (C) 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:18 / 29
页数:12
相关论文
共 72 条
[1]  
[Anonymous], 2009, 7 INT C URB CLIM YOK
[2]  
[Anonymous], 2012, Adapting to urban heat: A tool kit for local governments
[3]  
[Anonymous], BUS RISK ASS MAN CLI
[4]  
[Anonymous], 2006, 81 IOM
[5]  
[Anonymous], 2015, Transforming Our World: The 2030 Agenda for Sustainable Development
[6]  
[Anonymous], **DROPPED REF**
[7]  
[Anonymous], 2010, LANDSCAPE ECOL, DOI DOI 10.1007/s10980-009-9444-7
[8]   Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island [J].
Arnfield, AJ .
INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2003, 23 (01) :1-26
[9]   SURVEY OF EMISSIVITY VARIABILITY IN THERMOGRAPHY OF URBAN AREAS [J].
ARTIS, DA ;
CARNAHAN, WH .
REMOTE SENSING OF ENVIRONMENT, 1982, 12 (04) :313-329
[10]   RELATIVE IMPORTANCE ANALYSIS FOR THE STUDY OF THE FAMILY: ACCEPTING THE CHALLENGE OF CORRELATED PREDICTORS [J].
Barni, Daniela .
TPM-TESTING PSYCHOMETRICS METHODOLOGY IN APPLIED PSYCHOLOGY, 2015, 22 (02) :235-250