A novel identity from random walk theory

被引:0
作者
Franceschetti, DR [1 ]
Hanneken, JW [1 ]
机构
[1] Memphis State Univ, Dept Phys, Memphis, TN 38152 USA
来源
PHYSICA A | 1998年 / 260卷 / 3-4期
关键词
random walk; binomial coefficients;
D O I
10.1016/S0378-4371(98)00322-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel expansion of binomial coefficients in terms of trigonometric functions has been obtained by comparing expressions for the time evolution of the probability distribution for a random walker on a ring obtained by separate combinatoric and eigenvalue approaches. (C) 1998 Elsevier Science B.V. All rights reserved. PACS: 05.40.+j; 02.90.+p.
引用
收藏
页码:425 / 429
页数:5
相关论文
共 7 条
  • [1] Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
  • [2] Feller W., 1968, INTRO PROBABILITY TH
  • [3] THE RANDOM-WALK AS AN EIGENVALUE PROBLEM
    FRANCESCHETTI, DR
    HUNKE, EC
    ZHANG, X
    HADDOCK, JR
    [J]. AMERICAN JOURNAL OF PHYSICS, 1993, 61 (12) : 1111 - 1113
  • [4] Gradshteyn I.S., 1980, Table of Integrals, Series, and Products
  • [5] Arithmetic progression sums of binomial coefficients
    Konvalina, J
    Liu, YH
    [J]. APPLIED MATHEMATICS LETTERS, 1997, 10 (04) : 11 - 13
  • [6] Reif F., 2009, FUNDAMENTALS STAT TH
  • [7] ZHANG X, 1993, THESIS U MEMPHIS