Suspended graphene variable capacitor

被引:14
作者
AbdelGhany, M. [1 ]
Mahvash, F. [1 ,2 ]
Mukhopadhyay, M. [1 ]
Favron, A. [3 ]
Martel, R. [4 ]
Siaj, M. [2 ]
Szkopek, T. [1 ]
机构
[1] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 0E9, Canada
[2] Univ Quebec, Dept Chim & Biochim, Montreal, PQ H3C 3P8, Canada
[3] Univ Montreal, Dept Phys, 2900 Boul Edouard Montpetit, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Chim, 2900 Boul Edouard Montpetit, Montreal, PQ H3C 3J7, Canada
来源
2D MATERIALS | 2016年 / 3卷 / 04期
关键词
graphene; nano-electromechanical systems; NEMS; variable capacitor; MECHANICAL RESONATORS; RATIO;
D O I
10.1088/2053-1583/3/4/041005
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electromechanical variable capacitors, or varactors, find a wide range of applications including sensing applications and the tuning of electrical circuit resonance. We demonstrate a nano-electromechanical graphene varactor, a variable capacitor wherein the capacitance is tuned by voltage controlled deflection of a dense array of suspended graphene membranes. The low flexural rigidity of graphene monolayers is exploited to achieve low actuation voltage and high tunable capacitance density in an ultra-thin structure. Large arrays comprising thousands of suspensions were fabricated to give a tunable capacitance of over 10 pF mm(-2). This capacitance density suggests that graphene offers a potential solution to the challenge of reducing the size of micro-electromechanical systems (MEMS). A capacitance tuning of 55% was achieved with a 10 V actuating voltage, exceeding the 50% tuning limit of Hookean parallel plate pull-in without the use of complex mechanical schemes that occupy substrate area. Capacitor behavior was investigated experimentally, and described by a simple theoretical model. Mechanical properties of the graphene membranes were measured independently using atomic force microscopy. We present a comparison of state-of-the-art MEMS and graphene varactors. The quality factor of graphene varactors is limited by graphene sheet resistance, pull-in voltage can be improved with more aggressive scaling, while the power handling and cycling stability of graphene varactors remains unknown.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Theory of the suspended graphene varactor [J].
AbdelGhany, M. ;
Ledwosinska, E. ;
Szkopek, T. .
APPLIED PHYSICS LETTERS, 2012, 101 (15)
[2]   Large tuning ratio high aspect ratio variable capacitors using leveraged bending [J].
Achenbach, S. ;
Haluzan, D. T. ;
Klymyshyn, D. M. ;
Boerner, M. ;
Mohr, J. .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2014, 20 (10-11) :1807-1813
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[4]   Novel high-Q MEMS curled-plate variable capacitors fabricated in 0.35-μm CMOS technology [J].
Bakri-Kassem, Maher ;
Fouladi, Siamak ;
Mansour, Raafat R. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2008, 56 (02) :530-541
[5]   In Situ Observation of Electrostatic and Thermal Manipulation of Suspended Graphene Membranes [J].
Bao, Wenzhong ;
Myhro, Kevin ;
Zhao, Zeng ;
Chen, Zhen ;
Jang, Wanyoung ;
Jing, Lei ;
Miao, Feng ;
Zhang, Hang ;
Dames, Chris ;
Lau, Chun Ning .
NANO LETTERS, 2012, 12 (11) :5470-5474
[6]  
Barnes S. H., 1961, U.S. Patent, Patent No. [2,989, 671, 2989671]
[7]   High, Size-Dependent Quality Factor in an Array of Graphene Mechanical Resonators [J].
Barton, Robert A. ;
Ilic, B. ;
van der Zande, Arend M. ;
Whitney, William S. ;
McEuen, Paul L. ;
Parpia, Jeevak M. ;
Craighead, Harold G. .
NANO LETTERS, 2011, 11 (03) :1232-1236
[8]   Impermeable atomic membranes from graphene sheets [J].
Bunch, J. Scott ;
Verbridge, Scott S. ;
Alden, Jonathan S. ;
van der Zande, Arend M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
NANO LETTERS, 2008, 8 (08) :2458-2462
[9]   Electromechanical resonators from graphene sheets [J].
Bunch, J. Scott ;
van der Zande, Arend M. ;
Verbridge, Scott S. ;
Frank, Ian W. ;
Tanenbaum, David M. ;
Parpia, Jeevak M. ;
Craighead, Harold G. ;
McEuen, Paul L. .
SCIENCE, 2007, 315 (5811) :490-493
[10]  
Chen CY, 2013, NAT NANOTECHNOL, V8, P923, DOI [10.1038/NNANO.2013.232, 10.1038/nnano.2013.232]