SOME NOVEL RESULTS OF T-PERIODIC SOLUTIONS FOR RAYLEIGH TYPE EQUATION WITH DOUBLE DEVIATING ARGUMENTS

被引:0
|
作者
Wang, Yong [1 ]
Tao, Zhengwu [2 ]
Tian, Donghong [1 ]
Ma, Xin [3 ]
Li, Mingjun [4 ]
Feng, Zonghong [5 ]
机构
[1] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
[2] PetroChina, Tarim Oilfield Co, Res Inst Explorat & Dev, Korla 84100, Xinjiang, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Sichuan, Peoples R China
[4] CNOOC Ltd, Zhanjiang 524057, Guangdong, Peoples R China
[5] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic solution; Existence and uniqueness; Deviating argument; Rayleigh equation; FRACTURED HORIZONTAL WELLS; 2-PHASE FLOW BEHAVIOR; FINITE-CONDUCTIVITY FRACTURE; P-LAPLACIAN EQUATION; VERTICAL WELL; VARIABLE-COEFFICIENT; NEURAL-NETWORKS; GREY MODEL; EXISTENCE; KIND;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the following Rayleigh equation with double deviating arguments: x '' (t) + f (t, x' (t)) + g(1) (t, x(t - tau(1) (t))) + g(2) (t, x(t - tau(2) (t))) = e(t). Some criteria to guarantee the existence and uniqueness of periodic solutions of this equation is given by using Mawhin's continuation theorem and some new techniques. Our results are new and complement some known results.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 50 条