SOME NOVEL RESULTS OF T-PERIODIC SOLUTIONS FOR RAYLEIGH TYPE EQUATION WITH DOUBLE DEVIATING ARGUMENTS

被引:0
|
作者
Wang, Yong [1 ]
Tao, Zhengwu [2 ]
Tian, Donghong [1 ]
Ma, Xin [3 ]
Li, Mingjun [4 ]
Feng, Zonghong [5 ]
机构
[1] Southwest Petr Univ, Sch Sci, Chengdu 610500, Sichuan, Peoples R China
[2] PetroChina, Tarim Oilfield Co, Res Inst Explorat & Dev, Korla 84100, Xinjiang, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Sci, Mianyang 621010, Sichuan, Peoples R China
[4] CNOOC Ltd, Zhanjiang 524057, Guangdong, Peoples R China
[5] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Periodic solution; Existence and uniqueness; Deviating argument; Rayleigh equation; FRACTURED HORIZONTAL WELLS; 2-PHASE FLOW BEHAVIOR; FINITE-CONDUCTIVITY FRACTURE; P-LAPLACIAN EQUATION; VERTICAL WELL; VARIABLE-COEFFICIENT; NEURAL-NETWORKS; GREY MODEL; EXISTENCE; KIND;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study the following Rayleigh equation with double deviating arguments: x '' (t) + f (t, x' (t)) + g(1) (t, x(t - tau(1) (t))) + g(2) (t, x(t - tau(2) (t))) = e(t). Some criteria to guarantee the existence and uniqueness of periodic solutions of this equation is given by using Mawhin's continuation theorem and some new techniques. Our results are new and complement some known results.
引用
收藏
页码:55 / 68
页数:14
相关论文
共 50 条
  • [1] Some novel results of t-periodic solutions for rayleigh type equation with double deviating arguments
    Wang, Yong
    Tao, Zhengwu
    Tian, Donghong
    Ma, Xin
    Li, Mingjun
    Feng, Zonghong
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2020, 82 (01): : 55 - 68
  • [2] New results on the periodic solutions for a kind of Rayleigh equation with two deviating arguments
    Huang, Chuangxia
    He, Yigang
    Huang, Lihong
    Tan, Wen
    MATHEMATICAL AND COMPUTER MODELLING, 2007, 46 (5-6) : 604 - 611
  • [3] Periodic solutions for Rayleigh type p-Laplacian equation with deviating arguments
    Zong, Minggang
    Liang, Hongzhen
    APPLIED MATHEMATICS LETTERS, 2007, 20 (01) : 43 - 47
  • [4] PERIODIC SOLUTIONS FOR A KIND OF RAYLEIGH EQUATION WITH TWO DEVIATING ARGUMENTS
    Wu, Yuanheng
    Xiao, Bing
    Zhang, Hong
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2006,
  • [5] Periodic Solutions and Nontrivial Periodic Solutions for a Class of Rayleigh-Type Equation with Two Deviating Arguments
    Feng, Meiqiang
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [6] Periodic solutions for a kind of Rayleigh equation with two deviating arguments
    Peng, Lequn
    Liu, Bingwen
    Zhou, Qiyuan
    Huang, Lihong
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2006, 343 (07): : 676 - 687
  • [7] Existence and uniqueness of periodic solutions for a kind of Rayleigh equation with two deviating arguments
    Liu, Bingwen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (09) : 2108 - 2117
  • [8] New results of periodic solutions for a Rayleigh equation with a deviating argument
    Yong Wang
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 583 - 593
  • [9] New results of periodic solutions for a Rayleigh equation with a deviating argument
    Wang, Yong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (04): : 583 - 593
  • [10] Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument
    Lu, SP
    Ge, WG
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) : 501 - 514