Bohm potential for the time dependent harmonic oscillator

被引:3
作者
Soto-Eguibar, Francisco [1 ]
Asenjo, Felipe A. [2 ]
Hojman, Sergio A. [3 ,4 ,5 ]
Moya-Cessa, Hector M. [1 ]
机构
[1] Inst Nacl Astrofis Opt & Electr, INAOE, Calle Luis Enrique Erro 1, Puebla 72840, Mexico
[2] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago 7491169, Chile
[3] Univ Adolfo Ibanez, Dept Ciencias, Fac Artes Liber, Santiago 7500018, Chile
[4] Univ Chile, Dept Fis, Fac Ciencias, Santiago 7800003, Chile
[5] CREA, Ctr Recursos Educ Avanzados, Santiago 7500018, Chile
关键词
SCHRODINGER-EQUATION; QUANTUM-THEORY; MASS; PROPAGATION; INVARIANTS; SYSTEMS; STATES;
D O I
10.1063/5.0044144
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the Madelung-Bohm approach to quantum mechanics, we consider a time dependent phase that depends quadratically on position, and we show that it leads to a Bohm potential that corresponds to a time dependent harmonic oscillator, provided the time dependent term in the phase obeys an Ermakov equation.
引用
收藏
页数:6
相关论文
共 36 条
  • [1] Journeys from quantum optics to quantum technology
    Barnett, Stephen M.
    Beige, Almut
    Ekert, Artur
    Garraway, Barry M.
    Keitel, Christoph H.
    Kendon, Viv
    Lein, Manfred
    Milburn, Gerard J.
    Moya-Cessa, Hector M.
    Murao, Mio
    Pachos, Jiannis K.
    Palma, G. Massimo
    Paspalakis, Emmanuel
    Phoenix, Simon J. D.
    Piraux, Benard
    Plenio, Martin B.
    Sanders, Barry C.
    Twamley, Jason
    Vidiella-Barranco, A.
    Kim, M. S.
    [J]. PROGRESS IN QUANTUM ELECTRONICS, 2017, 54 : 19 - 45
  • [2] Quantum light propagation in longitudinally inhomogeneous waveguides as a spatial Lewis-Ermakov physical invariance
    Barral, D.
    Linares, J.
    [J]. OPTICS COMMUNICATIONS, 2016, 359 : 61 - 65
  • [3] Spatial propagation of quantum light states in longitudinally inhomogeneous waveguides
    Barral, David
    Linares, Jesus
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (09) : 1993 - 2002
  • [4] Direct measurement of the Wigner function of a one-photon Fock state in a cavity
    Bertet, P
    Auffeves, A
    Maioli, P
    Osnaghi, S
    Meunier, T
    Brune, M
    Raimond, JM
    Haroche, S
    [J]. PHYSICAL REVIEW LETTERS, 2002, 89 (20) : 200402 - 200402
  • [5] BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
  • [6] Connecting nth order generalised quantum Rabi models: Emergence of nonlinear spin-boson coupling via spin rotations
    Casanova, Jorge
    Puebla, Ricardo
    Moya-Cessa, Hector
    Plenio, Martin B.
    [J]. NPJ QUANTUM INFORMATION, 2018, 4
  • [7] A Review in Ermakov Systems and Their Symmetries
    Cervero, Jose M.
    Estevez, Pilar G.
    [J]. SYMMETRY-BASEL, 2021, 13 (03):
  • [8] Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity
    Chen, Xi
    Ruschhaupt, A.
    Schmidt, S.
    del Campo, A.
    Guery-Odelin, D.
    Muga, J. G.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (06)
  • [9] THE EVOLUTION OPERATOR TECHNIQUE IN SOLVING THE SCHRODINGER-EQUATION, AND ITS APPLICATION TO DISENTANGLING EXPONENTIAL OPERATORS AND SOLVING THE PROBLEM OF A MASS-VARYING HARMONIC-OSCILLATOR
    CHENG, CM
    FUNG, PCW
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (22): : 4115 - 4131
  • [10] Adiabatic quantum games and phase-transition-like behavior between optimal strategies
    de Ponte, M. A.
    Santos, Alan C.
    [J]. QUANTUM INFORMATION PROCESSING, 2018, 17 (06)