A self-adjoint decomposition of the radial momentum operator

被引:5
作者
Liu, Q. H. [1 ]
Xiao, S. F. [1 ,2 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Sch Theoret Phys, Changsha 410082, Hunan, Peoples R China
[2] Zhanjiang Normal Univ, Dept Phys, Zhanjiang 524048, Peoples R China
基金
中国国家自然科学基金;
关键词
Radial momentum operator; operator decomposition; self-adjointness; measurement; UNCERTAINTIES; POSITION;
D O I
10.1142/S0219887815500280
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With acceptance of the Dirac's observation that the canonical quantization entails using Cartesian coordinates, we examine the operator e(r)P(r) rather than P-r itself and demonstrate that there is a decomposition of e(r)P(r) into a difference of two self-adjoint but noncommutative operators, in which one is the total momentum and another is the transverse one. This study renders the operator P-r indirectly measurable and physically meaningful, offering an explanation of why the mean value of P-r over a quantum mechanical state makes sense and supporting Dirac's claim that P-r "is real and is the true momentum conjugate to r".
引用
收藏
页数:8
相关论文
共 22 条
[2]  
Dicke R., 1960, INTRO QUANTUM MECH
[3]  
Dirac P A M, 1967, PRINCIPLES QUANTUM M, P114
[4]   SELF-ADJOINTNESS OF MOMENTUM OPERATORS IN GENERALIZED COORDINATES [J].
DOMINGOS, JM ;
CALDEIRA, MH .
FOUNDATIONS OF PHYSICS, 1984, 14 (02) :147-154
[5]  
Greiner W., 2001, QUANTUM MECH INTRO, P193
[6]  
KLAUDER JR, 1999, MATH METHODS QUANTUM, P117
[7]   The uncertainties in radial position and radial momentum of an electron in the non-relativistic hydrogen-like atom [J].
Kuo, CD .
ANNALS OF PHYSICS, 2005, 316 (02) :431-439
[8]   RADIAL MOMENTUM OPERATOR [J].
LIBOFF, RL ;
NEBENZAHL, I ;
FLEISCHMANN, HH .
AMERICAN JOURNAL OF PHYSICS, 1973, 41 (08) :976-980
[9]   Radford's biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras [J].
Liu, Ling ;
Shen, Bingliang .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (03)
[10]   Distribution of xp in some molecular rotational states [J].
Liu, Q. H. .
PHYSICS LETTERS A, 2014, 378 (10) :785-789