Prussian Blue Analogues as Promising Thermal Power Generation Materials

被引:22
作者
Fukuzumi, Yuya [1 ]
Amaha, Kaoru [1 ]
Kobayashi, Wataru [1 ]
Niwa, Hideharu [1 ]
Mortitomo, Yutaka [1 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Fac Pure & Appl Sci, Tsukuba Res Ctr Energy Mat Sci TREMS, Tsukuba, Ibaraki 3058571, Japan
关键词
thermal power generation; thermal coefficient of redox potential; Prussian blue analogues; 3-DIMENSIONAL VISUALIZATION; CATHODE MATERIALS; SODIUM; FRAMEWORK;
D O I
10.1002/ente.201700952
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal coefficient (alpha=dV/dT) of redox potential (V) enables an efficient thermal power generation using waste heat. Actually, a battery-type thermocell, which consists of two kinds of redoxable solids with different alpha as anode and cathode, is demonstrated to produce electric energy in thermal cycles. To fabricate high performance device, alpha is systematically investigated in three kinds of Prussian blue analogues (PBAs), NaxCo[Fe(CN)(6)](0.71) (abbreviated as NCF71), NaxCo[Fe(CN)(6)](0.90) (NCF90) and NaxMn[Fe(CN)(6)](0.83) (NMF83), against the Na+ concentration (x). NCF90 shows the highest positive alpha (=1.4 mV K-1) in the lower-lying plateau while NMF83 shows the highest negative alpha (=-0.4 mV K-1) in the lower-lying plateau. In addition, the NCF90/NMF83 thermocell produces 5.5 meV/NCF90 in the initial cycle between T-L (=286 K) and T-H (=313 K). The thermal efficiency (eta=2.3 %) reaches 27 % of the Carnot efficiency (eta(carnot)=8.7 %). Thus, PBAs are promising materials for thermal power generation.
引用
收藏
页码:1865 / 1870
页数:6
相关论文
共 50 条
[41]   Prussian blue analogues as heterogeneous catalysts for hydrogen generation from hydrolysis of sodium borohydride: a comparative study [J].
Tuan, Duong Dinh ;
Kwon, Eilhann ;
Lin, Jia-Yin ;
Duan, Xiaoguang ;
Lin, Yi-Feng ;
Lin, Kun-Yi Andrew .
CHEMICAL PAPERS, 2021, 75 (02) :779-788
[42]   Prussian blue analogues as heterogeneous catalysts for hydrogen generation from hydrolysis of sodium borohydride: a comparative study [J].
Duong Dinh Tuan ;
Eilhann Kwon ;
Jia-Yin Lin ;
Xiaoguang Duan ;
Yi-Feng Lin ;
Kun-Yi Andrew Lin .
Chemical Papers, 2021, 75 :779-788
[43]   Effect of sodium content on electrochemical performance of Prussian Blue analogues electrode materials for sodium ion batteries [J].
Chen, Wen Chao ;
Xu, Shao Hui ;
Fei, Guang Tao ;
Li, Shi Jia ;
Xu, Hai Yan ;
Li, Xin Feng ;
Ouyang, Hao Miao .
SOLID STATE IONICS, 2024, 406
[44]   Prussian Blue Analogues Based on 3d-Metals as Cathode Materials for Magnesium Ion Batteries [J].
Arbenin, Andrey ;
Egorov, Semyon ;
Prikhodko, Igor ;
Fedorova, Anna ;
Penkova, Anastasia ;
Selyutin, Artem .
ENERGIES, 2025, 18 (03)
[45]   CO2 adsorption studies on Prussian blue analogues [J].
Karadas, F. ;
El-Faki, H. ;
Deniz, E. ;
Yavuz, C. T. ;
Aparicio, S. ;
Atilhan, M. .
MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 162 :91-97
[46]   Towards bottom-up nanopatterning of Prussian blue analogues [J].
Trannoy, Virgile ;
Faustini, Marco ;
Grosso, David ;
Mazerat, Sandra ;
Brisset, Francois ;
Dazzi, Alexandre ;
Bleuzen, Anne .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2014, 5 :1933-1943
[47]   Local Jahn-Teller order in Prussian blue analogues [J].
Harbourne, E. ;
Cattermull, J. ;
Roth, N. ;
Goodwin, A. L. .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 :C986-C986
[48]   Hydrogen storage in the iron series of porous Prussian blue analogues [J].
Krap, C. P. ;
Balmaseda, J. ;
Zamora, B. ;
Reguera, E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (19) :10381-10386
[49]   Prussian Blue Analogues as Electrodes for Aqueous Monovalent Ion Batteries [J].
Shen Qiu ;
Yunkai Xu ;
Xianyong Wu ;
Xiulei Ji .
Electrochemical Energy Reviews, 2022, 5 :242-262
[50]   Application of the infrared spectroscopy to the structural study of Prussian blue analogues [J].
Lejeune, Julien ;
Brubach, Jean-Blaise ;
Roy, Pascale ;
Bleuzen, Anne .
COMPTES RENDUS CHIMIE, 2014, 17 (06) :534-540