Prussian Blue Analogues as Promising Thermal Power Generation Materials

被引:22
作者
Fukuzumi, Yuya [1 ]
Amaha, Kaoru [1 ]
Kobayashi, Wataru [1 ]
Niwa, Hideharu [1 ]
Mortitomo, Yutaka [1 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Fac Pure & Appl Sci, Tsukuba Res Ctr Energy Mat Sci TREMS, Tsukuba, Ibaraki 3058571, Japan
关键词
thermal power generation; thermal coefficient of redox potential; Prussian blue analogues; 3-DIMENSIONAL VISUALIZATION; CATHODE MATERIALS; SODIUM; FRAMEWORK;
D O I
10.1002/ente.201700952
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal coefficient (alpha=dV/dT) of redox potential (V) enables an efficient thermal power generation using waste heat. Actually, a battery-type thermocell, which consists of two kinds of redoxable solids with different alpha as anode and cathode, is demonstrated to produce electric energy in thermal cycles. To fabricate high performance device, alpha is systematically investigated in three kinds of Prussian blue analogues (PBAs), NaxCo[Fe(CN)(6)](0.71) (abbreviated as NCF71), NaxCo[Fe(CN)(6)](0.90) (NCF90) and NaxMn[Fe(CN)(6)](0.83) (NMF83), against the Na+ concentration (x). NCF90 shows the highest positive alpha (=1.4 mV K-1) in the lower-lying plateau while NMF83 shows the highest negative alpha (=-0.4 mV K-1) in the lower-lying plateau. In addition, the NCF90/NMF83 thermocell produces 5.5 meV/NCF90 in the initial cycle between T-L (=286 K) and T-H (=313 K). The thermal efficiency (eta=2.3 %) reaches 27 % of the Carnot efficiency (eta(carnot)=8.7 %). Thus, PBAs are promising materials for thermal power generation.
引用
收藏
页码:1865 / 1870
页数:6
相关论文
共 50 条
[31]   The Effect of Pressure on Magnetic Properties of Prussian Blue Analogues [J].
Zentkova, Maria ;
Mihalik, Marian .
CRYSTALS, 2019, 9 (02)
[32]   Ladder Mechanisms of Ion Transport in Prussian Blue Analogues [J].
Nordstrand, Johan ;
Toledo-Carrillo, Esteban ;
Vafakhah, Sareh ;
Guo, Lu ;
Yang, Hui Ying ;
Kloo, Lars ;
Dutta, Joydeep .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) :1102-1113
[33]   Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries [J].
Xu, Chiwei ;
Yang, Zhengwei ;
Zhang, Xikun ;
Xia, Maoting ;
Yan, Huihui ;
Li, Jing ;
Yu, Haoxiang ;
Zhang, Liyuan ;
Shu, Jie .
NANO-MICRO LETTERS, 2021, 13 (01)
[34]   Performance of tertiary battery made of Prussian blue analogues [J].
Nagai, Ichiro ;
Shimaura, Yousuke ;
Shibata, Takayuki ;
Moritomo, Yutaka .
APPLIED PHYSICS EXPRESS, 2021, 14 (09)
[35]   Mixed valency and magnetism in cyanometallates and Prussian blue analogues [J].
Herrera, J. M. ;
Bachschmidt, A. ;
Villain, F. ;
Bleuzen, A. ;
Marvaud, V. ;
Wernsdorfer, W. ;
Verdaguer, M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1862) :127-138
[36]   Structure and Magnetism in Prussian Blue Analogues: Theory and Experiment [J].
Lawton, L. M. ;
Middlemiss, D. S. ;
Wilson, C. C. .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2007, 63 :S163-S164
[37]   A Structural Perspective on Prussian Blue Analogues for Aqueous Zinc-Ion Batteries [J].
Li, Min ;
Maisuradze, Mariam ;
Sciacca, Rosalinda ;
Hasa, Ivana ;
Giorgetti, Marco .
BATTERIES & SUPERCAPS, 2023, 6 (11)
[38]   Comparison of Charge Storage Properties of Prussian Blue Analogues Containing Cobalt and Copper [J].
Rensmo, Amanda ;
Hampton, Jennifer R. .
METALS, 2019, 9 (12)
[39]   Boosting the sodium storage performance of Prussian blue analogues via effective etching [J].
Yanan Zhao ;
Jian Peng ;
Kean Chen ;
Laibing Luo ;
Hui Chen ;
Hang Zhang ;
Shulei Chou ;
Xiangmin Feng ;
Weihua Chen ;
Ruoyu Cao ;
Xinping Ai ;
Yongjin Fang ;
Yuliang Cao .
Science China Chemistry, 2023, 66 :3154-3160
[40]   Bipolar Prussian blue analogues electrodes for symmetric aqueous batteries in diverse scenarios [J].
Liu, Yu ;
Luo, Lei ;
Shen, Zhaoxi ;
Ji, Yu ;
Wen, Zhaorui ;
Li, Zhongheng ;
Li, Jinliang ;
Sun, Pengzhan ;
Xie, Junpeng ;
Hong, Guo .
CHEMICAL ENGINEERING JOURNAL, 2023, 465