Prussian Blue Analogues as Promising Thermal Power Generation Materials

被引:22
作者
Fukuzumi, Yuya [1 ]
Amaha, Kaoru [1 ]
Kobayashi, Wataru [1 ]
Niwa, Hideharu [1 ]
Mortitomo, Yutaka [1 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Fac Pure & Appl Sci, Tsukuba Res Ctr Energy Mat Sci TREMS, Tsukuba, Ibaraki 3058571, Japan
关键词
thermal power generation; thermal coefficient of redox potential; Prussian blue analogues; 3-DIMENSIONAL VISUALIZATION; CATHODE MATERIALS; SODIUM; FRAMEWORK;
D O I
10.1002/ente.201700952
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The thermal coefficient (alpha=dV/dT) of redox potential (V) enables an efficient thermal power generation using waste heat. Actually, a battery-type thermocell, which consists of two kinds of redoxable solids with different alpha as anode and cathode, is demonstrated to produce electric energy in thermal cycles. To fabricate high performance device, alpha is systematically investigated in three kinds of Prussian blue analogues (PBAs), NaxCo[Fe(CN)(6)](0.71) (abbreviated as NCF71), NaxCo[Fe(CN)(6)](0.90) (NCF90) and NaxMn[Fe(CN)(6)](0.83) (NMF83), against the Na+ concentration (x). NCF90 shows the highest positive alpha (=1.4 mV K-1) in the lower-lying plateau while NMF83 shows the highest negative alpha (=-0.4 mV K-1) in the lower-lying plateau. In addition, the NCF90/NMF83 thermocell produces 5.5 meV/NCF90 in the initial cycle between T-L (=286 K) and T-H (=313 K). The thermal efficiency (eta=2.3 %) reaches 27 % of the Carnot efficiency (eta(carnot)=8.7 %). Thus, PBAs are promising materials for thermal power generation.
引用
收藏
页码:1865 / 1870
页数:6
相关论文
共 50 条
[1]   Thermal efficiency of a thermocell made of Prussian blue analogues [J].
Shibata, Takayuki ;
Fukuzumi, Yuya ;
Moritomo, Yutaka .
SCIENTIFIC REPORTS, 2018, 8
[2]   Improved Thermal Cyclability of Tertiary Battery Made of Prussian Blue Analogues [J].
Takahara, Izumi ;
Shibata, Takayuki ;
Fukuzumi, Yuya ;
Moritomo, Yutaka .
CHEMISTRYSELECT, 2019, 4 (29) :8558-8563
[3]   Strategies for synthesis of Prussian blue analogues [J].
Kjeldgaard, Solveig ;
Dugulan, Iulian ;
Mamakhel, Aref ;
Wagemaker, Marnix ;
Iversen, Bo Brummerstedt ;
Bentien, Anders .
ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (01)
[4]   Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments [J].
Zakaria, Mohamed B. ;
Chikyow, Toyohiro .
COORDINATION CHEMISTRY REVIEWS, 2017, 352 :328-345
[5]   Energy storage materials derived from Prussian blue analogues [J].
Ma, Feng ;
Li, Qing ;
Wang, Tanyuan ;
Zhang, Hanguang ;
Wu, Gang .
SCIENCE BULLETIN, 2017, 62 (05) :358-368
[6]   Energy storage materials derived from Prussian blue analogues [J].
Feng Ma ;
Qing Li ;
Tanyuan Wang ;
Hanguang Zhang ;
Gang Wu .
Science Bulletin, 2017, 62 (05) :358-368
[7]   Progress of Prussian Blue and Its Analogues as Cathode Materials for Potassium Ion Batteries [J].
Bai, Yue ;
Ke'er, YuChi ;
Liu, Xu ;
Tian, Shinuo ;
Yang, Shujie ;
Qian, Xi ;
Ma, Bin ;
Fang, Minghao ;
Liu, Yan'gai ;
Huang, Zhaohui ;
Min, Xin .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2023, 26 (25)
[8]   Prussian blue analogues: a new class of anode materials for lithium ion batteries [J].
Nie, Ping ;
Shen, Laifa ;
Luo, Haifeng ;
Ding, Bing ;
Xu, Guiyin ;
Wang, Jie ;
Zhang, Xiaogang .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (16) :5852-5857
[9]   Thermal decomposition of Prussian blue analogues in various gaseous media [J].
D. P. Domonov ;
S. I. Pechenyuk ;
Yu. P. Semushina .
Journal of Thermal Analysis and Calorimetry, 2021, 146 :629-635
[10]   Thermal decomposition of Prussian blue analogues in various gaseous media [J].
Domonov, D. P. ;
Pechenyuk, S. I. ;
Semushina, Yu. P. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 146 (02) :629-635