Modeling Pathogen Dispersal in Marine Fish and Shellfish

被引:29
作者
Cantrell, Danielle L. [1 ]
Groner, Maya L. [2 ,3 ]
Ben-Horin, Tal [4 ,5 ]
Grant, Jon [6 ]
Revie, Crawford W. [1 ,7 ]
机构
[1] Univ Prince Edward Isl, Atlantic Vet Coll, Hlth Management Dept, Charlottetown, PE, Canada
[2] Prince William Sound Sci Ctr, Cordova, AK USA
[3] US Geol Survey, Western Fisheries Res Ctr, Seattle, WA USA
[4] Univ Rhode Isl, Coll Environm & Life Sci, Dept Fisheries Anim & Vet Sci, Kingston, RI 02881 USA
[5] North Carolina State Univ, Coll Vet Med, Ctr Marine Sci & Technol, Dept Clin Sci, Morehead City, NC USA
[6] Dalhousie Univ, Oceanog Dept, Halifax, NS, Canada
[7] Univ Strathclyde, Dept Comp & Informat Sci, Glasgow, Lanark, Scotland
基金
加拿大自然科学与工程研究理事会;
关键词
HEMORRHAGIC SEPTICEMIA VIRUS; SEA LICE INFECTION; NETWORK ANALYSIS; NECROSIS VIRUS; NEW-ZEALAND; SALMON; TEMPERATURE; DISEASE; CONNECTIVITY; TRANSMISSION;
D O I
10.1016/j.pt.2019.12.013
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
In marine ecosystems, oceanographic processes often govern host contacts with infectious agents. Consequently, many approaches developed to quantify pathogen dispersal in terrestrial ecosystems have limited use in the marine context. Recent applications in marine disease modeling demonstrate that physical oceanographic models coupled with biological models of infectious agents can characterize dispersal networks of pathogens in marine ecosystems. Biophysical modeling has been used over the past two decades to model larval dispersion but has only recently been utilized in marine epidemiology. In this review, we describe how biophysical models function and how they can be used to measure connectivity of infectious agents between sites, test hypotheses regarding pathogen dispersal, and quantify patterns of pathogen spread, focusing on fish and shellfish pathogens.
引用
收藏
页码:239 / 249
页数:11
相关论文
共 77 条
[1]   Connectivity modelling and network analysis of sea lice infection in Loch Fyne, west coast of Scotland [J].
Adams, Thomas ;
Black, Kenny ;
MacIntyre, Craig ;
MacIntyre, Iain ;
Dean, Rebecca .
AQUACULTURE ENVIRONMENT INTERACTIONS, 2012, 3 (01) :51-63
[2]   Connected networks of sea lice populations: dynamics and implications for control [J].
Adams, Thomas P. ;
Proud, Roland ;
Black, Kenneth D. .
AQUACULTURE ENVIRONMENT INTERACTIONS, 2015, 6 (03) :273-284
[3]   A high resolution hydrodynamic model system suitable for novel harmful algal bloom modelling in areas of complex coastline and topography [J].
Aleynik, Dmitry ;
Dale, Andrew C. ;
Porter, Marie ;
Davidson, Keith .
HARMFUL ALGAE, 2016, 53 :102-117
[4]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[5]   Significance of Plankton Community Structure and Nutrient Availability for the Control of Dinoflagellate Blooms by Parasites: A Modeling Approach [J].
Alves-de-Souza, Catharina ;
Pecqueur, David ;
Le Floc'h, Emilie ;
Mas, Sebastien ;
Roques, Cecile ;
Mostajir, Behzad ;
Vidussi, Franscesca ;
Velo-Suarez, Lourdes ;
Sourisseau, Marc ;
Fouilland, Eric ;
Guillou, Laure .
PLOS ONE, 2015, 10 (06)
[6]   Modelling sea lice dispersion under varying environmental forcing in a Scottish sea loch [J].
Amundrud, T. L. ;
Murray, A. G. .
JOURNAL OF FISH DISEASES, 2009, 32 (01) :27-44
[7]   Probabilistic approach of water residence time and connectivity using Markov chains with application to tidal embayments [J].
Bacher, C. ;
Filgueira, R. ;
Guyondet, T. .
JOURNAL OF MARINE SYSTEMS, 2016, 153 :25-41
[8]   Successful validation of a larval dispersal model using genetic parentage data [J].
Bode, Michael ;
Leis, Jeffrey M. ;
Mason, Luciano B. ;
Williamson, David H. ;
Harrison, Hugo B. ;
Choukroun, Severine ;
Jones, Geoffrey P. .
PLOS BIOLOGY, 2019, 17 (07)
[9]   Effect of environmental salinity on sea lice Lepeophtheirus salmonis settlement success [J].
Bricknell, Ian R. ;
Dalesman, Sarah J. ;
O'Shea, Brid ;
Pert, Campbell C. ;
Mordue Luntz, A. Jennifer .
DISEASES OF AQUATIC ORGANISMS, 2006, 71 (03) :201-212
[10]  
Cantrell D.L., 2019, CAN J FISH AQUAT SCI, DOI [10.1139/cjfas-2019-004020, DOI 10.1139/CJFAS-2019-004020]