Superstatistics and non-Gaussian diffusion

被引:74
|
作者
Metzler, Ralf [1 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
ANOMALOUS DIFFUSION; BROWNIAN DIFFUSION; KINETIC-THEORY; DYNAMICS; MOTION; NONERGODICITY; NANOPARTICLES; SUBDIFFUSION; STATISTICS; MODELS;
D O I
10.1140/epjst/e2020-900210-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Brownian motion and viscoelastic anomalous diffusion in homogeneous environments are intrinsically Gaussian processes. In a growing number of systems, however, non-Gaussian displacement distributions of these processes are being reported. The physical cause of the non-Gaussianity is typically seen in different forms of disorder. These include, for instance, imperfect "ensembles" of tracer particles, the presence of local variations of the tracer mobility in heteroegenous environments, or cases in which the speed or persistence of moving nematodes or cells are distributed. From a theoretical point of view stochastic descriptions based on distributed ("superstatistical") transport coefficients as well as time-dependent generalisations based on stochastic transport parameters with built-in finite correlation time are invoked. After a brief review of the history of Brownian motion and the famed Gaussian displacement distribution, we here provide a brief introduction to the phenomenon of non-Gaussianity and the stochastic modelling in terms of superstatistical and diffusing-diffusivity approaches.
引用
收藏
页码:711 / 728
页数:18
相关论文
共 50 条
  • [41] Fickian Yet Non-Gaussian Nanoscopic Lipid Diffusion in the Raft-Mimetic Membrane
    Erimban, Shakkira
    Daschakraborty, Snehasis
    JOURNAL OF PHYSICAL CHEMISTRY B, 2023, 127 (22) : 4939 - 4951
  • [42] Universal Evolution of Fickian Non-Gaussian Diffusion in Two- and Three-Dimensional Glass-Forming Liquids
    Rusciano, Francesco
    Pastore, Raffaele
    Greco, Francesco
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [43] Colossal Brownian yet non-Gaussian diffusion induced by nonequilibrium noise
    Bialas, K.
    Luczka, J.
    Haenggi, P.
    Spiechowicz, J.
    PHYSICAL REVIEW E, 2020, 102 (04)
  • [44] Complex patterns of non-Gaussian diffusion in artificial anisotropic tissue models
    Grinberg, Farida
    Farrher, Ezequiel
    Maximov, Ivan I.
    Shah, N. Jon
    MICROPOROUS AND MESOPOROUS MATERIALS, 2013, 178 : 44 - 47
  • [45] Non-Gaussian propagator for elephant random walks
    da Silva, M. A. A.
    Cressoni, J. C.
    Schuetz, Gunter M.
    Viswanathan, G. M.
    Trimper, Steffen
    PHYSICAL REVIEW E, 2013, 88 (02):
  • [46] Non-Gaussian information of heterogeneity in soft matter
    Dandekar, Rahul
    Bose, Soumyakanti
    Dutta, Suman
    EPL, 2020, 131 (01)
  • [47] Non-Gaussian displacement distributions in models of heterogeneous active particle dynamics
    Lemaitre, Elisabeth
    Sokolov, Igor M.
    Metzler, Ralf
    Chechkin, Aleksei, V
    NEW JOURNAL OF PHYSICS, 2023, 25 (01):
  • [48] Non-anomalous diffusion is not always Gaussian
    Forte, Giuseppe
    Cecconi, Fabio
    Vulpiani, Angelo
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (05)
  • [49] Protein Crowding in Lipid Bilayers Gives Rise to Non-Gaussian Anomalous Lateral Diffusion of Phospholipids and Proteins
    Jeon, Jae-Hyung
    Javanainen, Matti
    Martinez-Seara, Hector
    Metzler, Ralf
    Vattulainen, Ilpo
    PHYSICAL REVIEW X, 2016, 6 (02):
  • [50] Fickian yet non-Gaussian diffusion in two-dimensional Yukawa liquids
    Ghannad, Zahra
    PHYSICAL REVIEW E, 2019, 100 (03)