Superstatistics and non-Gaussian diffusion

被引:74
|
作者
Metzler, Ralf [1 ]
机构
[1] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
关键词
ANOMALOUS DIFFUSION; BROWNIAN DIFFUSION; KINETIC-THEORY; DYNAMICS; MOTION; NONERGODICITY; NANOPARTICLES; SUBDIFFUSION; STATISTICS; MODELS;
D O I
10.1140/epjst/e2020-900210-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Brownian motion and viscoelastic anomalous diffusion in homogeneous environments are intrinsically Gaussian processes. In a growing number of systems, however, non-Gaussian displacement distributions of these processes are being reported. The physical cause of the non-Gaussianity is typically seen in different forms of disorder. These include, for instance, imperfect "ensembles" of tracer particles, the presence of local variations of the tracer mobility in heteroegenous environments, or cases in which the speed or persistence of moving nematodes or cells are distributed. From a theoretical point of view stochastic descriptions based on distributed ("superstatistical") transport coefficients as well as time-dependent generalisations based on stochastic transport parameters with built-in finite correlation time are invoked. After a brief review of the history of Brownian motion and the famed Gaussian displacement distribution, we here provide a brief introduction to the phenomenon of non-Gaussianity and the stochastic modelling in terms of superstatistical and diffusing-diffusivity approaches.
引用
收藏
页码:711 / 728
页数:18
相关论文
共 50 条
  • [31] Non-Gaussian diffusion imaging: a brief practical review
    De Santis, Silvia
    Gabrielli, Andrea
    Palombo, Marco
    Maraviglia, Bruno
    Capuani, Silvia
    MAGNETIC RESONANCE IMAGING, 2011, 29 (10) : 1410 - 1416
  • [32] A model-system of Fickian yet non-Gaussian diffusion: light patterns in place of complex matter
    Pastore, Raffaele
    Ciarlo, Antonio
    Pesce, Giuseppe
    Sasso, Antonio
    Greco, Francesco
    SOFT MATTER, 2022, 18 (02) : 351 - 364
  • [33] Anomalous, non-Gaussian tracer diffusion in crowded two-dimensional environments
    Ghosh, Surya K.
    Cherstvy, Andrey G.
    Grebenkov, Denis S.
    Metzler, Ralf
    NEW JOURNAL OF PHYSICS, 2016, 18
  • [34] Quenched trap model on the extreme landscape: The rise of subdiffusion and non-Gaussian diffusion
    Luo, Liang
    Yi, Ming
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [35] Non-Gaussian behavior of reflected fractional Brownian motion
    Wada, Alexander H. O.
    Warhover, Alex
    Vojta, Thomas
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019,
  • [36] Non-Gaussian Brownian Diffusion in Dynamically Disordered Thermal Environments
    Tyagi, Neha
    Cherayil, Binny J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (29) : 7204 - 7209
  • [37] Polymers critical point originates Brownian non-Gaussian diffusion
    Nampoothiri, Sankaran
    Orlandini, Enzo
    Seno, Flavio
    Baldovin, Fulvio
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [38] Gaussianity Fair: The Riddle of Anomalous yet Non-Gaussian Diffusion
    Metzler, Ralf
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 413 - 415
  • [39] Fickian Non-Gaussian Diffusion in Glass-Forming Liquids
    Rusciano, Francesco
    Pastore, Raffaele
    Greco, Francesco
    PHYSICAL REVIEW LETTERS, 2022, 128 (16)
  • [40] Brownian non-Gaussian polymer diffusion and queuing theory in the mean-field limit
    Nampoothiri, Sankaran
    Orlandini, Enzo
    Seno, Flavio
    Baldovin, Fulvio
    NEW JOURNAL OF PHYSICS, 2022, 24 (02):