A multi-species epidemic model with spatial dynamics

被引:107
作者
Arino, J
Davis, JR
Hartley, D
Jordan, R
Miller, JM
van den Driessche, P
机构
[1] Mt Holyoke Coll, Dept Math & Stat, S Hadley, MA 01075 USA
[2] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[3] Dynam Technol Inc, Arlington, VA 22209 USA
[4] US Dept Def, Ft Detrick, MD 21702 USA
来源
MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA | 2005年 / 22卷 / 02期
基金
美国国家航空航天局; 加拿大自然科学与工程研究理事会; 美国海洋和大气管理局; 美国国家科学基金会;
关键词
spatial epidemic; multiple species; basic reproduction number; global stability;
D O I
10.1093/imammb/dqi003
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A model is formulated that describes the spatial propagation of a disease that can be transmitted between multiple species. The spatial component consists, for each species, of a certain number of patches that make up the vertices of a digraph, the arcs of which represent the movement of the various species between the patches. In each of the patches and for each species, a susceptible-exposed-infectious-recovered (SEIR) epidemic model describes the evolution of the disease status of individuals. Also in each patch, there is transmission of the disease from species to species. An analysis of the system is given, beginning with results on the mobility component. A formula is derived for the computation of the basic reproduction number R-0 for sspecies and npatches, which then determines the global stability properties of the disease free equilibrium. Simulations for the spread of a disease in one species and two patches are presented.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 23 条
[1]  
[Anonymous], 1967, KIBERNETICA
[2]  
Arino J., 2003, Mathematical Population Studies, V10, P175, DOI 10.1080/08898480306720
[3]  
BAROYAN O V, 1971, Advances in Applied Probability, V3, P224, DOI 10.2307/1426167
[4]  
Berman A., 1987, NONNEGATIVE MATRICES
[5]  
Castillo-Chavez C., 1995, Mathematical population dynamics: analysis of heterogeneity, P33
[6]  
Diekmann O., 2000, MATH EPIDEMIOLOGY IN
[7]  
Fiedler M., 1986, SPECIAL MATRICES THE
[8]  
Grenfell B. T., 1995, ECOLOGY INFECT DIS N
[9]   Biological terrorism - The looming threat of bioterrorism [J].
Henderson, DA .
SCIENCE, 1999, 283 (5406) :1279-1282
[10]   The mathematics of infectious diseases [J].
Hethcote, HW .
SIAM REVIEW, 2000, 42 (04) :599-653