The Gabor wave front set in spaces of ultradifferentiable functions

被引:16
作者
Boiti, Chiara [1 ]
Jornet, David [2 ]
Oliaro, Alessandro [3 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 30, I-44121 Ferrara, Italy
[2] Univ Politecn Valencia, IUMPA, Camino Vera S-N, Valencia 46071, Spain
[3] Univ Torino, Dipartimento Matemat, Via Carlo Alberto 10, I-10123 Turin, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2019年 / 188卷 / 02期
关键词
Gabor wave front set; Weighted Schwartz classes; Short-time Fourier transform; Gabor frames; PARTIAL-DIFFERENTIAL OPERATORS; PSEUDODIFFERENTIAL-OPERATORS; PROPAGATION;
D O I
10.1007/s00605-018-1242-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the spaces of ultradifferentiable functions S as introduced by Bjorck (and its dual S) and we use time-frequency analysis to define a suitable wave front set in this setting and obtain several applications: global regularity properties of pseudodifferential operators of infinite order and the micro-pseudolocal behaviour of partial differential operators with polynomial coefficients and of localization operators with symbols of exponential growth. Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can be described using only Gabor frames. Finally, some examples show the convenience of the use of weight functions to describe more precisely the global regularity of (ultra)distributions.
引用
收藏
页码:199 / 246
页数:48
相关论文
共 41 条
[1]   Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes [J].
Albanese, A. A. ;
Jornet, D. ;
Oliaro, A. .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (04) :411-425
[2]   Quasianalytic Wave Front Sets for Solutions of Linear Partial Differential Operators [J].
Albanese, A. A. ;
Jornet, D. ;
Oliaro, A. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (02) :153-181
[3]  
[Anonymous], 2006, CMS BOOKS MATH
[4]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[5]   LINEAR PARTIAL DIFFERENTIAL OPERATORS AND GENERALIZED DISTRIBUTIONS [J].
BJORCK, G .
ARKIV FOR MATEMATIK, 1966, 6 (4-5) :351-&
[6]   Wave Front Sets with respect to the Iterates of an Operator with Constant Coefficients [J].
Boiti, C. ;
Jornet, D. ;
Juan-Huguet, J. .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[7]  
Boiti C, 2018, MANUSCRIPTA MATH, V155, P419, DOI 10.1007/s00229-017-0939-2
[8]   A simple proof of Kotake-Narasimhan theorem in some classes of ultradifferentiable functions [J].
Boiti, Chiara ;
Jornet, David .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2017, 8 (02) :297-317
[9]   A characterization of the wave front set defined by the iterates of an operator with constant coefficients [J].
Boiti, Chiara ;
Jornet, David .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (03) :891-919
[10]   Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms [J].
Boiti, Chiara ;
Jornet, David ;
Oliaro, Alessandro .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) :920-944